逻辑斯蒂回归中损失函数和代价函数的推导

2024-03-31 19:38

本文主要是介绍逻辑斯蒂回归中损失函数和代价函数的推导,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参见 Stanford CS230学习笔记(二):Lecture 2 Basics, Logistic Regression and Vectorizing

逻辑斯蒂回归

公式

Y ^ = σ ( w T X + b ) \hat{Y}=\sigma (w^TX+b) Y^=σ(wTX+b)

其公式中的各项数据含义如下:

  • 输入X:假设输入为一张64*64的图片,那么依次取出R、G、B矩阵中的所有像素值,我们可以得到一个64*64*3的向量,将其记作x,即为一个输入;将样本集中每个样本的x(i)按列排成(64*64*3)*m的矩阵,记作X
  • 输出YhatYhat是一个1*m的矩阵,每个值代表相应的x的输出,其中的hat代表预测值
  • 参数w b:需要利用梯度下降等方法寻找的参数,以使后续的代价函数最小化
  • σsigmoid函数,用以归一化,将括号中的值限定在(0,1)范围内, σ ( z ) = 1 1 + e − z \sigma(z)=\frac{1}{1+e^{-z}} σ(z)=1+ez1

损失函数与代价函数

在逻辑斯蒂回归中,损失函数(Lost function)为
L ( y ^ , y ) = − ( y log ⁡ ( y ^ ) + ( 1 − y ) log ⁡ ( 1 − y ^ ) ) L(\hat{y},y)=-(y\log{(\hat{y})+(1-y)\log(1-\hat y)}) L(y^,y)=(ylog(y^)+(1y)log(1y^))

代价函数(Cost function)为
J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(w,b)=\frac{1}{m}\sum_{i=1}^m L(\hat y^{(i)},y^{(i)}) J(w,b)=m1i=1mL(y^(i),y(i))

推导

损失函数

逻辑斯蒂回归概率的基本公式为(csdn的latex不支持align…)

合并起来

p ( y ∣ x ) = y ^ y ⋅ ( 1 − y ^ ) ( 1 − y ^ ) p(y|x)=\hat{y}^y\cdot (1-\hat y)^{(1-\hat y)} p(yx)=y^y(1y^)(1y^)

取对数,以保证函数单增

log ⁡ p ( y ∣ x ) = y log ⁡ y ^ + ( 1 − y ^ ) log ⁡ ( 1 − y ^ ) \log p(y|x)=y\log \hat{y} + {(1-\hat y)} \log (1-\hat y) logp(yx)=ylogy^+(1y^)log(1y^)
为了最大化概率(的对数),我们需要最小化损失函数,因此两者增减性相反,添加负号即可
L ( y ^ , y ) = − ( y log ⁡ ( y ^ ) + ( 1 − y ) log ⁡ ( 1 − y ^ ) ) L(\hat{y},y)=-(y\log{(\hat{y})+(1-y)\log(1-\hat y)}) L(y^,y)=(ylog(y^)+(1y)log(1y^))

代价函数

代价函数的公式是根据极大似然估计来的,就是数理统计里面那一套,样本先相乘再求对数,对数求导使导数等于0,得到极大似然估计值

至于为什么最后相乘变成了相加,是因为对数的存在,将连乘的对数变成了各项对数的连加

对于m个样本的整个训练集,服从独立同分布的样本的联合概率就是每个样本的概率的乘积

log ⁡ ∏ i = 1 m p ( y ( i ) ∣ x ( i ) ) = ∑ i = 1 m log ⁡ p ( y ( i ) ∣ x ( i ) ) = − ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) \log \prod_{i=1}^{m}{p(y^{(i)}|x^{(i)})}=\sum_{i=1}^m \log {p(y^{(i)}|x^{(i)})}=-\sum_{i=1}^m L(\hat y^{(i)},y^{(i)}) logi=1mp(y(i)x(i))=i=1mlogp(y(i)x(i))=i=1mL(y^(i),y(i))

极大化似然概率就是极小化代价函数,因此增减性相反加负号,此处还要除上m

J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(w,b)=\frac{1}{m}\sum_{i=1}^m L(\hat y^{(i)},y^{(i)}) J(w,b)=m1i=1mL(y^(i),y(i))

这篇关于逻辑斯蒂回归中损失函数和代价函数的推导的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/865161

相关文章

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

MySQL逻辑删除与唯一索引冲突解决方案

《MySQL逻辑删除与唯一索引冲突解决方案》本文探讨MySQL逻辑删除与唯一索引冲突问题,提出四种解决方案:复合索引+时间戳、修改唯一字段、历史表、业务层校验,推荐方案1和方案3,适用于不同场景,感兴... 目录问题背景问题复现解决方案解决方案1.复合唯一索引 + 时间戳删除字段解决方案2:删除后修改唯一字

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1