逻辑斯蒂回归中损失函数和代价函数的推导

2024-03-31 19:38

本文主要是介绍逻辑斯蒂回归中损失函数和代价函数的推导,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参见 Stanford CS230学习笔记(二):Lecture 2 Basics, Logistic Regression and Vectorizing

逻辑斯蒂回归

公式

Y ^ = σ ( w T X + b ) \hat{Y}=\sigma (w^TX+b) Y^=σ(wTX+b)

其公式中的各项数据含义如下:

  • 输入X:假设输入为一张64*64的图片,那么依次取出R、G、B矩阵中的所有像素值,我们可以得到一个64*64*3的向量,将其记作x,即为一个输入;将样本集中每个样本的x(i)按列排成(64*64*3)*m的矩阵,记作X
  • 输出YhatYhat是一个1*m的矩阵,每个值代表相应的x的输出,其中的hat代表预测值
  • 参数w b:需要利用梯度下降等方法寻找的参数,以使后续的代价函数最小化
  • σsigmoid函数,用以归一化,将括号中的值限定在(0,1)范围内, σ ( z ) = 1 1 + e − z \sigma(z)=\frac{1}{1+e^{-z}} σ(z)=1+ez1

损失函数与代价函数

在逻辑斯蒂回归中,损失函数(Lost function)为
L ( y ^ , y ) = − ( y log ⁡ ( y ^ ) + ( 1 − y ) log ⁡ ( 1 − y ^ ) ) L(\hat{y},y)=-(y\log{(\hat{y})+(1-y)\log(1-\hat y)}) L(y^,y)=(ylog(y^)+(1y)log(1y^))

代价函数(Cost function)为
J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(w,b)=\frac{1}{m}\sum_{i=1}^m L(\hat y^{(i)},y^{(i)}) J(w,b)=m1i=1mL(y^(i),y(i))

推导

损失函数

逻辑斯蒂回归概率的基本公式为(csdn的latex不支持align…)

合并起来

p ( y ∣ x ) = y ^ y ⋅ ( 1 − y ^ ) ( 1 − y ^ ) p(y|x)=\hat{y}^y\cdot (1-\hat y)^{(1-\hat y)} p(yx)=y^y(1y^)(1y^)

取对数,以保证函数单增

log ⁡ p ( y ∣ x ) = y log ⁡ y ^ + ( 1 − y ^ ) log ⁡ ( 1 − y ^ ) \log p(y|x)=y\log \hat{y} + {(1-\hat y)} \log (1-\hat y) logp(yx)=ylogy^+(1y^)log(1y^)
为了最大化概率(的对数),我们需要最小化损失函数,因此两者增减性相反,添加负号即可
L ( y ^ , y ) = − ( y log ⁡ ( y ^ ) + ( 1 − y ) log ⁡ ( 1 − y ^ ) ) L(\hat{y},y)=-(y\log{(\hat{y})+(1-y)\log(1-\hat y)}) L(y^,y)=(ylog(y^)+(1y)log(1y^))

代价函数

代价函数的公式是根据极大似然估计来的,就是数理统计里面那一套,样本先相乘再求对数,对数求导使导数等于0,得到极大似然估计值

至于为什么最后相乘变成了相加,是因为对数的存在,将连乘的对数变成了各项对数的连加

对于m个样本的整个训练集,服从独立同分布的样本的联合概率就是每个样本的概率的乘积

log ⁡ ∏ i = 1 m p ( y ( i ) ∣ x ( i ) ) = ∑ i = 1 m log ⁡ p ( y ( i ) ∣ x ( i ) ) = − ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) \log \prod_{i=1}^{m}{p(y^{(i)}|x^{(i)})}=\sum_{i=1}^m \log {p(y^{(i)}|x^{(i)})}=-\sum_{i=1}^m L(\hat y^{(i)},y^{(i)}) logi=1mp(y(i)x(i))=i=1mlogp(y(i)x(i))=i=1mL(y^(i),y(i))

极大化似然概率就是极小化代价函数,因此增减性相反加负号,此处还要除上m

J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(w,b)=\frac{1}{m}\sum_{i=1}^m L(\hat y^{(i)},y^{(i)}) J(w,b)=m1i=1mL(y^(i),y(i))

这篇关于逻辑斯蒂回归中损失函数和代价函数的推导的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/865161

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

MySQL 字符串截取函数及用法详解

《MySQL字符串截取函数及用法详解》在MySQL中,字符串截取是常见的操作,主要用于从字符串中提取特定部分,MySQL提供了多种函数来实现这一功能,包括LEFT()、RIGHT()、SUBST... 目录mysql 字符串截取函数详解RIGHT(str, length):从右侧截取指定长度的字符SUBST

Kotlin运算符重载函数及作用场景

《Kotlin运算符重载函数及作用场景》在Kotlin里,运算符重载函数允许为自定义类型重新定义现有的运算符(如+-…)行为,从而让自定义类型能像内置类型那样使用运算符,本文给大家介绍Kotlin运算... 目录基本语法作用场景类对象数据类型接口注意事项在 Kotlin 里,运算符重载函数允许为自定义类型重