使用Python分析股价波动周期

2024-03-31 18:48

本文主要是介绍使用Python分析股价波动周期,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基本思路是获取股价收盘信息后,使用希尔伯特黄变换将股价波动数据拆解为不同周期的波动曲线。再本别利用频谱分析计算每一个曲线的频率。目标是将股价波动数据拆解为不同周期波动的叠加态。

1.获取收盘价

富途有很好的API接口,给我这种小散送了每个月的使用次数也够了。

富途openAPI官网

2.希尔伯特黄变换

利用pyhht包,官方的文档磕磕绊绊看懂。

 

合起来

import pyhht
from pyhht.visualization import plot_imfs
import numpy as np
import random
from futu import *
import pandas as pd
import sys
import re
def likaiHHT_savefig_imfs(filepath,xlabel,title,signal, imfs, time_samples=None, fignum=None):if time_samples is None:time_samples = np.arange(signal.shape[0])n_imfs = imfs.shape[0]plt.figure(num=fignum)axis_extent = max(np.max(np.abs(imfs[:-1, :]), axis=0))# Plot original signalax = plt.subplot(n_imfs + 1, 1, 1)ax.plot(time_samples, signal)ax.axis([time_samples[0], time_samples[-1], signal.min(), signal.max()])ax.tick_params(which='both', left=True, bottom=False, labelleft=True,labelbottom=False)ax.grid(False)ax.set_ylabel('signal')ax.set_title(title)# Plot the IMFsfor i in range(n_imfs - 1):print(i + 2)ax = plt.subplot(n_imfs + 1, 1, i + 2)ax.plot(time_samples, imfs[i, :])ax.axis([time_samples[0], time_samples[-1], -axis_extent, axis_extent])ax.tick_params(which='both', left=True, bottom=False, labelleft=True,labelbottom=False)ax.grid(False)ax.set_ylabel('imf' + str(i + 1))# Plot the residueax = plt.subplot(n_imfs + 1, 1, n_imfs + 1)ax.plot(time_samples, imfs[-1, :], 'r')ax.axis('auto')#ax.tick_params(which='both', left=False, bottom=False, labelleft=False,labelbottom=False)ax.grid(False)ax.set_ylabel('res.')ax.set_xlabel(xlabel)plt.savefig(filepath)return 
def imfs_max_freq(imfs,sample_rate,fft_size):
#计算每一个imfs频谱中最高的那个频率n_imfs=imfs.shape[0]max_freq=[]for i in range(n_imfs-1):xs=imfs[i,:][:fft_size]xf=np.fft.rfft(xs)/fft_sizefreqs=np.linspace(0,sample_rate/2,fft_size//2+1)xfp=20*np.log10(np.clip(np.abs(xf), 1e-20, 1e100))max_freq.append(freqs[np.argmax(xfp)])return max_freq
def HHTstock(stockid,begindate,enddate):closelist=[]quote_ctx = OpenQuoteContext(host='127.0.0.1', port=11111)  # 创建行情对象ret, data, page_req_key = quote_ctx.request_history_kline(stockid, start=begindate, end=enddate, max_count=5)  # 每页5个,请求第一页if ret == RET_OK:#print(data)#print(data['code'][0])    # 取第一条的股票代码#print(data['close'].values.tolist())   # 第一页收盘价转为listcloselist=data['close'].values.tolist()else:print('error:', data)while page_req_key != None:  # 请求后面的所有结果#print('*************************************')ret, data, page_req_key = quote_ctx.request_history_kline(stockid, start=begindate, end=enddate, max_count=5, page_req_key=page_req_key) # 请求翻页后的数据if ret == RET_OK:#print(data)closelist.extend(data['close'].values.tolist())else:print('error:', data)print('All pages are finished!')quote_ctx.close() # 关闭对象,防止连接条数用尽trading_day_num=len(closelist)t=np.linspace(0,trading_day_num,trading_day_num)np_close=np.array(closelist)decomposer=pyhht.EMD(np_close)imfs=decomposer.decompose()#plot_imfs(np_close,imfs,t)likaiHHT_savefig_imfs('./'+stockid+'.png','t/day',stockid,np_close,imfs,t)ls=imfs_max_freq(imfs,1,1000)#算每一段曲线的频率print(ls)return;
def main():HHTstock('HK.01816','2012-9-11','2020-9-18')
if __name__ == '__main__':main()

计算结果

 

这篇关于使用Python分析股价波动周期的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/865051

相关文章

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时