B样条曲线(记录)

2024-03-31 16:44
文章标签 记录 曲线 样条

本文主要是介绍B样条曲线(记录),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        B样条曲线的生成靠的两点:

                1、控制点

                2、基函数

        B样条曲线的基函数是一个De Boor的递归表达式[1]:

                B_{i},_{0}(u)=\left\{\begin{matrix} 1, u_{i}\leqslant u\leqslant u_{i+1}\\0, otherwise \end{matrix}\right.                                                                (1)

                B_{i},_{d}(u)=\frac{u-u_{i}}{u_{i+d}-u_{i}}B_{i},_{d-1}(u)+\frac{u_{i+d+1}-u}{u_{i+d+1}-u_{i+1}}B_{i+1},_{d-1}(u)                    (2)

        其中B_{i},_{d}(u)是第id阶基函数。

        而B样条曲线可以表示为[2]:

                P(u)=\sum_{i=0}^{n}p_{i}B_{i},_{d}(u)                                                                        (3)

        如何理解上式?首先,我们知道,如果一个函数在定义域内处处可微(处处连续),则可以通过被泰勒展开成一个多项式级数。换言之,只要阶数足够,对于任意的连续可微曲线,都可以用一个多项式去逼近。B样条曲线的表达式就是一个d阶多项式。它的定义域通过节点区间来表示[1][2]。

        接下来,我们通过一个简单的例子来逐步理解B样条曲线。

        我们以3个控制点的B样条曲线为例。其表达式为:

                P(u)=p_{0}B_{0},_{d}(u)+p_{1}B_{1},_{d}(u)+p_{2}B_{2},_{d}(u)

        现在我们来看一下上式的3个基函数。由式(2),我们可知d-1阶的基函数如下图:

d-1阶基函数的个数为:3\cdot 2-2=4,简单归纳一下:

        设N为控制点的个数,则d阶的基函数个数也为N,而d-1阶的基函数个数为:N\cdot 2-(N-1)=N+1。即低一阶的基函数个数是高一阶加一。则0阶的基函数的个数为:

\left ( \left ( \left ( \left ( \left ( N \right )+1 \right )+1 \right )+1 \right )+...+1 \right )=N+d

        另外,对于多项式的阶,必须小于已知数据点数的个数。于是我们设d=N-1。则0阶的基函数个数为2N-1,为奇数。

        接下来,我们来看看节点区间。对于0阶基函数,一个基函数对应一个节点区间。所以节点区间的个数,我们以3个0阶基函数为例:

为3个区间,共计4个节点,也即节点数为0阶基函数个数加一,即2N个节点。

        另外,当我们选取一个参数u时,由于节点区间不相交,所以我们由式(1)可知0阶基函数,由且只有一个基函数的值为1。其余皆为0。考虑如下情况:

u取在区间[u_{i},u_{i+1})时,我们可以发现在1阶基函数,所有基函数相机等于1。因为0阶基函数只有一个起作用,而其余基函数的值为0.递推到1阶,所有1阶基函数,变为2个基函数起作用。而这两个基函数相加:B_{i-1},_{1}(u)+B_{i},_{1}(u)=\frac{u_{i+1}-u}{u_{i+1}-u_{i}}B_{i},_{0}(u)+\frac{u-u_{i}}{u_{i+1}-u_{i}}B_{i},_{0}(u)=B_{i},_{0}=1

        同理,到了2阶基函数,我们可以得到:

B_{i-2},_{2}(u)+B_{i-1},_{2}(u)=B_{i-1},_{1}(u)           B_{i-1},_{2}(u)+B_{i},_{2}(u)=B_{i},_{1}(u)

也即2阶基函数相加也等于1。以此类推,我们得出一个结论,d阶基函数相加等于1。

        现在来考虑如下的递归过程。假设我们有4个控制点,阶数d=3。于是基函数的传递如下:

假如我们把u取在[u_{0},u_{1})内,则B_{0},_{0}=1,而其余0阶基函数为0。按照以上的结论,我们知道

B_{0},_{0}(u)=B_{-1},_{1}(u)+B_{0},_{1}(u)=1,而实际上,没有B_{-1},_{1}(u)。于是到了1阶,基函数之和不等于1。而且每进一阶,基函数之和都会有损失。

        同时,我们还希望,当u取u=u_{0}或者u=u_{2n-1}时,曲线与控制点0或者控制点n重合。换句话说,就是曲线在端点处与控制点重合,也即B_{0},_{3}(u)=1,而其余3阶基函数等于0。很明显,u=u_{0}无法使以上条件成立。为了实现以上条件,必须解决基函数之和损失的问题。那么u就必须取在区间[u_{3},u_{4})内。当u=u_{3}时,递归到3阶可得B_{0},_{3}(u)=1,而其余为0。当u=u_{4}时,递归到3阶可得B_{3},_{3}(u)=1,而其余为0。因此为了满足基函数之和为1。而且当u取在区间端点时,曲线与控制点重合。我们必须舍弃[u_{3},u_{4})之外的区间。这个操作叫“重复度”。具体的操作是令u_{3}之前的节点都等于u_{3}。而u_{4}之后的节点都等于u_{4}。也即[u_{d},u_{d+1})区间之外,其余区间节点都分别赋值u_{d},u_{d+1}

        例如,原本各区间为[u_{0}=0,u_{1}=1),[u_{1}=1,u_{2}=2),[u_{2}=2,u_{3}=3),[u_{3}=3,u_{4}=4),[u_{4}=4,u_{5}=5),[u_{5}=5,u_{6}=6),[u_{6}=6,u_{7}=7]。进行“重复度”操作后,节点区间变为:[u_{0}=3,u_{1}=3),[u_{1}=3,u_{2}=3),[u_{2}=3,u_{3}=3),[u_{3}=3,u_{4}=4),[u_{4}=4,u_{5}=4),[u_{5}=4,u_{6}=4),[u_{6}=4,u_{7}=4],甚至干脆,我们取u_{3}=0,u_{4}=1

        接下来,我们设\alpha =\frac{u_{i+1}-u}{u_{i+1}-u_{i}},\beta =\frac{u-u_{i}}{u_{i+1}-u_{i}},我们可以得到如下的基函数系数传递图:

则我们可以得到d阶第i个基函数为B_{i},_{d}(u)=Q_{i},_{d}\alpha ^{d-i}\beta ^{i}B_{d},_{0}(u)=Q_{i},_{d}\alpha ^{d-i}\beta ^{i},其中Q_{i},_{d}为如下分布的系数:

以上三角序列为杨辉三角序列,因此Q_{i},_{d}=C^{i}_{d},i\in [0,d]

参考:

1、样条曲线曲面-3:BSpline的原理

2、详解B样条曲线

这篇关于B样条曲线(记录)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/864809

相关文章

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

qtcreater配置opencv遇到的坑及实践记录

《qtcreater配置opencv遇到的坑及实践记录》我配置opencv不管是按照网上的教程还是deepseek发现都有些问题,下面是我的配置方法以及实践成功的心得,感兴趣的朋友跟随小编一起看看吧... 目录电脑环境下载环境变量配置qmake加入外部库测试配置我配置opencv不管是按照网上的教程还是de

使用nohup和--remove-source-files在后台运行rsync并记录日志方式

《使用nohup和--remove-source-files在后台运行rsync并记录日志方式》:本文主要介绍使用nohup和--remove-source-files在后台运行rsync并记录日... 目录一、什么是 --remove-source-files?二、示例命令三、命令详解1. nohup2.

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步