BZOJ 1096 [ZJOI2007]仓库建设 动态规划+斜率优化

2024-03-30 16:48

本文主要是介绍BZOJ 1096 [ZJOI2007]仓库建设 动态规划+斜率优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description

  L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。由于这座山处于高原内
陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象
部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于
地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库
的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设
置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,
假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到
以下数据:1:工厂i距离工厂1的距离Xi(其中X1=0);2:工厂i目前已有成品数量Pi;:3:在工厂i建立仓库的费用
Ci;请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。

Input

  第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。

Output

  仅包含一个整数,为可以找到最优方案的费用。

Sample Input

3
0 5 10
5 3 100
9 6 10

Sample Output

32

HINT

在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)*5+(9-5)*3=57,总费用67,不如前者优。

【数据规模】

对于100%的数据, N ≤1000000。 所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。






传送门
考虑一个工厂,可以建仓库或者不建仓库搬到后面的某个仓库里;
用f[i]表示i工厂建立仓库,前u个仓库的成品都搬运完毕的最小花费。
那么枚举一个j,假设(j+1)~i都没有建过仓库,
根据贪心的思想我们知道(j+1)~i肯定都运到i工厂去了,
那么f[i]=f[j]+(j+1)~(i-1)都运到i的费用cost[j+1..i]+C[i]
其中,
cost[j+1..i]=p[j+1]*(x[i]-x[j+1])+p[j+2]*(x[i]-x[j+2])+……+p[i-1]*(x[i]-x[i-1])
            =x[i]*(p[j+1]+p[j+2]+……+p[i-1])-p[j+1]*x[j+1]-……-p[i-1]*x[i-1]
对p作前缀和sump,对p*x作前缀和sumpx,那么
cost[j+1..i]=x[i]*sump[j+1..i-1]-sumpx[j+1..i-1]
也就是说, 这就得到了一个O(N^2)的算法。

接下来就是一个普通的斜率优化……
直接用double比较斜率竟然过了= =



#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1000005;
int n,Q[N];
ll x[N],P[N],C[N];
ll sump[N],sumpx[N];
ll f[N];
double xl(int j,int k){return (double)(f[j]-f[k]+sumpx[j]-sumpx[k])/(double)(sump[j]-sump[k]);
}
ll ANS(int i,int j){return f[j]+C[i]+x[i]*(sump[i-1]-sump[j])-(sumpx[i-1]-sumpx[j]);
}
int main(){scanf("%d",&n);sump[0]=sumpx[0]=0LL;for (int i=1;i<=n;i++)scanf("%lld%lld%lld",&x[i],&P[i],&C[i]),sump[i]=sump[i-1]+P[i],sumpx[i]=sumpx[i-1]+P[i]*x[i];memset(f,100,sizeof(f));f[0]=0,Q[1]=0;int head=1,tail=1;for (int i=1;i<=n;i++){while (head<tail && ANS(i,Q[head])>ANS(i,Q[head+1])) head++;f[i]=ANS(i,Q[head]);while (head<tail && xl(Q[tail],i)<xl(Q[tail-1],Q[tail])) tail--;Q[++tail]=i;}printf("%lld\n",f[n]);return 0;
}

这篇关于BZOJ 1096 [ZJOI2007]仓库建设 动态规划+斜率优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/862030

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决