字符型,整形和浮点型在内存中的存储(包含大小端,整形提升,截断)

2024-03-30 12:32

本文主要是介绍字符型,整形和浮点型在内存中的存储(包含大小端,整形提升,截断),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

# 一、字符型

# 二、整形

# 三、浮点型



# 一、字符型

举例 char a = 'A'

字母A所对应的ASCII表二进制形式为01000001.十进制为65.十六进制为41.

一个char类型数据所占的内存是一个字节.(1byte = 8bit)计算机存储数据都是以二进制形式存储。那么&a里存储就是01000001.(注意,字符型不存在反码补码以及大小端序)

 

 为什么char a,signed char b以整形打印出来是-1,unsigned char c打印出来是255呢?先看数据的存储。首先先讲一下原码反码和补码。

原码

直接将二进制按照正负数的形式翻译成二进制

反码

符号位不变,其他按位取反

补码

反码+1得到补码

正数的原码,反码,补码都相同

-1的原码10000000000000000000000000000001

       反码11111111111111111111111111111110(符号位不变,按位取反)

       补码11111111111111111111111111111111(反码+1)

因为char类型只占1byte。所以a,b,c它们的内存中存储的就是补码中低位的8个1。当以整形打印的时候。char类型和signed char都代表有符号字符型,这时候就需要整形提升,按照它们的符号位提升32个比特位。a和b中存储的都是11111111.符号位位1.所以提升完后变成了11111111111111111111111111111111(这是补码形式),要把它变回原码需要先-1,再取反。

11111111111111111111111111111110 -反码

1000000000000000000000000001-原码

所以a和b以%d形式打印结果都为-1.

由于c是无符号字符,它是没有符号位的,所以前面32个比特位全部补0

00000000000000000000000011111111-补码

这时候符号位为0表示正数,正数的原反补码相同。二进制转换结果就是255.

 这里是以%u打印char a。先看a中存储的数据。

-1的原码10000000000000000000000000000001

       反码11111111111111111111111111111110

       补码11111111111111111111111111111111

上面已经讲到过char类型只占一个字节。所以a中存放的是11111111

再看%u。先进行整型提升,a是有符号的字符。按照符号位提升,符号位为1

11111111111111111111111111111111-补码

%u认为这个数据是无符号数,不存在符号位。所以直接二进制转换得到

# 二、整形

int型大家应该都很了解,这里就讲一下unsigned int

 

-1的原码10000000000000000000000000000001

       反码11111111111111111111111111111110

       补码11111111111111111111111111111111

unsigned int a 中存储的就是11111111111111111111111111111111。

以%d打印,第一个1视为符号位,1为负数,转换成原码

11111111111111111111111111111111-补码

11111111111111111111111111111110-反码

10000000000000000000000000000001-原码

二进制转换十进制结果就是-1

以%u打印,就认为a中存得是一个无符号数,没有符号位,直接对11111111111111111111111111111111进行二进制转换,结果为

 再举一个例子

 要想解决这题首先得知道strlen的原理,它会不停读取字符直到读取到‘\0’时停止。那就只需要知道在char a[1000]哪里会存储到第一个‘\0’,先看一下a[0]中存储的是什么

a[0] = -1;

之前已经讲过数据截断。不熟悉的可以回头看一下字符型的几个题目。

&a[0] ->00000001->-1数据截断

&a[1]->00000010->-2数据截断

&a[2]->00000011->-3数据截断

已经需要strlen会在读取到‘\0'时停止,\0对应的ASCII码值为0.那就是要找什么时候a[i]里存得时00000000.8个比特位存储的极限是11111111.转换成十进制是255,当255再+1,266的原码就是

100000000.数据截断存进arr[i]中的就是00000000。现在进行的是-1-i。我们不需要考虑正负的问题,因为数据截断的是低位,只需要让它低8位变成00000000,也就是当-1-i=-256。当i为255,arr[255]中存储就是00000000.0-254一共有255个字符,所以结果为255.

大小端

大端字节序:数据的低位保存在内存的高地址中,数据的高位保存在内存的低地址中

小段字节序:数据的低位保存在内存的低地址中,数据的高位保存在内存的高地址中

举例:

int a = 64

原码反码补码-00000000000000000000000001000000

转换成16进制0x00 00 00 40

0x00D9F824就是a的地址。int一共占四个字节,这里从内存中看到低位到高位的存储顺序是

40 00 00 00.符合了小端字节序,数据的低位保存在内存的低地址中,数据的高位保存在内存的高地址中。

# 三、浮点型

浮点数分为两类,32位(float),64位(double)

根据国际标准IEEE(电气和电子工程协会),任意一个二进制浮点数可以表示成:

(-1)^S*M*2^E

float a = 5.5

小数点后面按2^-1,2^-2计算以此类推。

转换成二进制:101.1 = 1.011*2^2

S:符号位

只存在正负0/1

M:尾数部分

尾数部分只保留小数点后面的部分省略前面的1.。以上面的5.5为例,最后写成1.011*2^2.所有小数的最终形式都是1.xxxxxxxxxxxxx。因此前面的1.可以舍去,这样提高了小数点后的一位精度。

E:指数位

E会有三种情况

E不全为0或不全为1.

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(32位)或1023(64位),得到真实值,再将有效数字M前加上第一位的1.比如0.5的二进制形式位0.1,由于规定正数部分必须位1,即将小数点又移1位,则为1.0*2^-1,其在内存中的表现形式位-1+127=126,表示位01111110,而尾数1.0去掉正数部分为0,补齐0到23位,其二进制形式位:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或1-1023),有效数字M不再加上第一位的1,而是还原为0.xxxxxxxxxx的小数。这样做时为了表示正负0,以及无线接近于0的数字。

E全为1

这时,如果有效数字M全为0,表示正负无穷大(正负取决于符号位s)

 

 第一个打印%d为1问题不大。看一下float* p中存得是什么

&a 原码反码补码-00000000000000000000000000000001

当以%f打印时,第一个0为符号位,后8位为指数位,后23位为尾数部分

以%f解读可以看成 0 00000000 00000000000000000000001

此时指数位E全位0.这是一个无线接近于0的负数,所以打印结果为0.000000.

浮点数1.0以%d形式打印

1.0 ->二进制1.0->(-1)^0*1.0*2^0->s=0, m= 1.0, e=0+127=127

-> 0 01111111 00000000000000000000000

以%d来看符号位为0,正数,后面31位时0111111100000000000000000000000.转换为十进制

 最后以%f打印1.0,小数点后默认保留六位,结果为1.000000.

这篇关于字符型,整形和浮点型在内存中的存储(包含大小端,整形提升,截断)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861493

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

SQL Server 查询数据库及数据文件大小的方法

《SQLServer查询数据库及数据文件大小的方法》文章介绍了查询数据库大小的SQL方法及存储过程实现,涵盖当前数据库、所有数据库的总大小及文件明细,本文结合实例代码给大家介绍的非常详细,感兴趣的... 目录1. 直接使用SQL1.1 查询当前数据库大小1.2 查询所有数据库的大小1.3 查询每个数据库的详

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致