沪深300股票聚类可视化案例||tushare完整可运行代码逐行解释

本文主要是介绍沪深300股票聚类可视化案例||tushare完整可运行代码逐行解释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上篇文章:《可视化股票市场结构||沪深300股票聚类可视化》逐行代码解释了sklearn中的一个案例:可视化股票市场结构。案例中采用的数据是美股。这篇文章将其移植到A股市场,看看我们的沪深300股票市场结构如何。采用的分类及可视化手段与sklearn案例完全一样。

在这里插入图片描述

在这里插入图片描述

  • 沪深300

沪深300指数1是由上海和深圳证券市场中选取市值大、流动性好的300支A股作为样本编制而成的成份股指数。沪深300指数样本覆盖了沪深市场六成左右的市值,具有良好的市场代表性。由中证指数有限公司2编制负责。

可以通过tushare获取:

  1. 首先获取沪深300成分列表

在这里插入图片描述

  1. 再获取个股历史纪录,只保留时间、开盘价、收盘价,截取2017年到2019年间数据
import numpy as np
import matplotlib.pyplot as plt
import tushare as ts
hs_datas = ts.get_hs300s()
symbols_name = np.array(hs_datas['name'])
symbols_code = np.array(hs_datas['code'])
quotes = []
for index, code in enumerate(symbols_code):stock_data = ts.get_hist_data(code, start='2017-01-01', end='2019-01-01')stock_data.sort_values(by=['date'], inplace=True)stock_data.reset_index(inplace=True)stock_data = stock_data[['date', 'open', 'close']]quotes.append(stock_data)row_now = hs_datas[hs_datas['code'] == code]name = row_now.iloc[0]['name']print('已获取第', index + 1, '只股:', code, name, '2017-01-01 到 2019-01-01的历史数据')# exit()
print(quotes)

在这里插入图片描述

  1. 数据整理,转为可为模型使用的数据
close_prices = np.vstack([q['close'] for q in quotes])
open_prices = np.vstack([q['open'] for q in quotes])
# 每日价格变换可能承载我们所需信息
variation = close_prices - open_prices

在这里插入图片描述

通过这三步操作,就完成了沪深300指数个股的历史记录。

上述第2部分的代码所得结果,在处理第3步时,会出现如下错误:(已解决)ValueError: all the input array dimensions except for the concatenation axis must match exactly。3上面给出了原因及解决方案,仔细研究应该时可以解决的,如果没搞懂,可以留言问我要完整代码。

  • 学习一个图结构

采用稀疏逆协方差评估来寻找哪些报价之间存在有条件的关联。

edge_model = covariance.GraphicalLassoCV(cv=5)   
X = variation.copy().T
X /= X.std(axis=0)
edge_model.fit(X)
  • 聚类

采用Affinity Propagation(近邻传播);因为它不强求相同大小的类,并且能从数据中自动确定类的数目。

_, labels = cluster.affinity_propagation(edge_model.covariance_)
n_labels = labels.max()
names = symbols_name[0:11]
for i in range(n_labels + 1):print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i])))
  • 嵌入到2D画布

采用 Manifold learning(流形学习)技术来实现2D嵌入。

node_position_model = manifold.LocallyLinearEmbedding(n_components=2, eigen_solver='dense', n_neighbors=6)embedding = node_position_model.fit_transform(X.T).T
  • 可视化

3个模型的输出结合在一个2D图形上,节点表示股票,边表示:

  1. 簇标签用于定义节点颜色
  2. 稀疏协方差模型用于展示边的强度
  3. 2D嵌入用于定位平面中的节点
# Visualization
plt.figure(1, facecolor='w', figsize=(10, 8))
plt.clf()
ax = plt.axes([0., 0., 1., 1.])
plt.axis('off')# Display a graph of the partial correlations
partial_correlations = edge_model.precision_.copy()  #偏相关分析
d = 1 / np.sqrt(np.diag(partial_correlations))
partial_correlations *= d
partial_correlations *= d[:, np.newaxis]
non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02)# Plot the nodes using the coordinates of our embedding
plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels,cmap=plt.cm.nipy_spectral)# Plot the edges
start_idx, end_idx = np.where(non_zero)
# a sequence of (*line0*, *line1*, *line2*), where::
#            linen = (x0, y0), (x1, y1), ... (xm, ym)segments = [[embedding[:, start], embedding[:, stop]]for start, stop in zip(start_idx, end_idx)]
values = np.abs(partial_correlations[non_zero])
lc = LineCollection(segments,zorder=0, cmap=plt.cm.hot_r,norm=plt.Normalize(0, .7 * values.max()))
lc.set_array(values)
lc.set_linewidths(15 * values)
ax.add_collection(lc)# Add a label to each node. The challenge here is that we want to
# position the labels to avoid overlap with other labels
for index, (name, label, (x, y)) in enumerate(zip(names, labels, embedding.T)):dx = x - embedding[0]dx[index] = 1dy = y - embedding[1]dy[index] = 1this_dx = dx[np.argmin(np.abs(dy))]this_dy = dy[np.argmin(np.abs(dx))]# print(dx)# print(this_dx)# exit()if this_dx > 0:horizontalalignment = 'left'x = x + .002else:horizontalalignment = 'right'x = x - .002if this_dy > 0:verticalalignment = 'bottom'y = y + .002else:verticalalignment = 'top'y = y - .002plt.text(x, y, name, size=10,horizontalalignment=horizontalalignment,verticalalignment=verticalalignment,bbox=dict(facecolor='w',edgecolor=plt.cm.nipy_spectral(label / float(n_labels)),alpha=.6))plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(),embedding[0].max() + .10 * embedding[0].ptp(),)
plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(),embedding[1].max() + .03 * embedding[1].ptp())plt.show()
  • 输出结果

在这里插入图片描述

在这里插入图片描述

聚类后结果

综述,整个过程除了获取沪深300指数个股资料部分的代码,其余各部分操作与《可视化股票市场结构||沪深300股票聚类可视化》4中完全一样,如需详细了解,可参考上文,特别是上文附录了大量相关细节。
如需完整代码,请留言索取。

  • Reference


  1. 维基百科 ↩︎

  2. 中证指数有限公司 ↩︎

  3. (已解决)ValueError: all the input array dimensions except for the concatenation axis must match exactly ↩︎

  4. 《可视化股票市场结构||沪深300股票聚类可视化》 ↩︎

这篇关于沪深300股票聚类可视化案例||tushare完整可运行代码逐行解释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861266

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

使用Go实现文件复制的完整流程

《使用Go实现文件复制的完整流程》本案例将实现一个实用的文件操作工具:将一个文件的内容完整复制到另一个文件中,这是文件处理中的常见任务,比如配置文件备份、日志迁移、用户上传文件转存等,文中通过代码示例... 目录案例说明涉及China编程知识点示例代码代码解析示例运行练习扩展小结案例说明我们将通过标准库 os

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho