Stable Baselines/用户向导/示例

2024-03-30 10:08

本文主要是介绍Stable Baselines/用户向导/示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Stable Baselines官方文档中文版 Github CSDN
尝试翻译官方文档,水平有限,如有错误万望指正

  • 先用Colab Notebook在线试试吧

    下述所有示例都可用Google colab Notebooks执行:

    • 开始
    • 训练、保存、载入
    • 多重处理
    • 监视训练和及绘图
    • Atari游戏
    • 强制退出(包括训练好的agent)
    • 事后经历回顾
    • RL Baselines zoo
  • 基础用法:训练、保存、载入

    在下述案例,我们会在Lunar Lander(登月飞行器)环境训练、保存并载入一个DQN模型

    在Google Colab Notebooks上尝试

在这里插入图片描述

LunarLander需要box2d这个Python包。可以先apt install swigpip install box2d box2d-kengz实现安装

每次调用,load函数会从头重建模型,这个过程可能较慢。如果你用不同参数数据集评估同一模型,可以考虑用load_parameters来替代。

import gymfrom stable_baselines import DQN# Create environment
env = gym.make('LunarLander-v2')# Instantiate the agent
model = DQN('MlpPolicy', env, learning_rate=1e-3, prioritized_replay=True, verbose=1)
# Train the agent
model.learn(total_timesteps=int(2e5))
# Save the agent
model.save("dqn_lunar")
del model  # delete trained model to demonstrate loading# Load the trained agent
model = DQN.load("dqn_lunar")# Enjoy trained agent
obs = env.reset()
for i in range(1000):action, _states = model.predict(obs)obs, rewards, dones, info = env.step(action)env.render()
  • 多重处理:释放向量化环境的力量

    在Google Colab Notebook上测试

在这里插入图片描述

import gym
import numpy as npfrom stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import SubprocVecEnv
from stable_baselines.common import set_global_seeds
from stable_baselines import ACKTRdef make_env(env_id, rank, seed=0):"""Utility function for multiprocessed env.:param env_id: (str) the environment ID:param num_env: (int) the number of environments you wish to have in subprocesses:param seed: (int) the inital seed for RNG:param rank: (int) index of the subprocess"""def _init():env = gym.make(env_id)env.seed(seed + rank)return envset_global_seeds(seed)return _initenv_id = "CartPole-v1"
num_cpu = 4  # Number of processes to use
# Create the vectorized environment
env = SubprocVecEnv([make_env(env_id, i) for i in range(num_cpu)])model = ACKTR(MlpPolicy, env, verbose=1)
model.learn(total_timesteps=25000)obs = env.reset()
for _ in range(1000):action, _states = model.predict(obs)obs, rewards, dones, info = env.step(action)env.render()
  • 使用Callback:监控训练

    你可以定义一个在agent内部调用的回调函数。有助于监控训练,比如在Tensorboard(或Visdom)中呈现实时学习曲线或保存最佳agent。如果你的回调函数返回False,说明训练异常退出。

    在Google Colab Notebook上测试

在这里插入图片描述

LunarLanderContinuous环境中DDPG的学习曲线

import osimport gym
import numpy as np
import matplotlib.pyplot as pltfrom stable_baselines.ddpg.policies import LnMlpPolicy
from stable_baselines.bench import Monitor
from stable_baselines.results_plotter import load_results, ts2xy
from stable_baselines import DDPG
from stable_baselines.ddpg import AdaptiveParamNoiseSpecbest_mean_reward, n_steps = -np.inf, 0def callback(_locals, _globals):"""Callback called at each step (for DQN an others) or after n steps (see ACER or PPO2):param _locals: (dict):param _globals: (dict)"""global n_steps, best_mean_reward# Print stats every 1000 callsif (n_steps + 1) % 1000 == 0:# Evaluate policy training performancex, y = ts2xy(load_results(log_dir), 'timesteps')if len(x) > 0:mean_reward = np.mean(y[-100:])print(x[-1], 'timesteps')print("Best mean reward: {:.2f} - Last mean reward per episode: {:.2f}".format(best_mean_reward, mean_reward))# New best model, you could save the agent hereif mean_reward > best_mean_reward:best_mean_reward = mean_reward# Example for saving best modelprint("Saving new best model")_locals['self'].save(log_dir + 'best_model.pkl')n_steps += 1return True# Create log dir
log_dir = "/tmp/gym/"
os.makedirs(log_dir, exist_ok=True)# Create and wrap the environment
env = gym.make('LunarLanderContinuous-v2')
env = Monitor(env, log_dir, allow_early_resets=True)# Add some param noise for exploration
param_noise = AdaptiveParamNoiseSpec(initial_stddev=0.1, desired_action_stddev=0.1)
# Because we use parameter noise, we should use a MlpPolicy with layer normalization
model = DDPG(LnMlpPolicy, env, param_noise=param_noise, verbose=0)
# Train the agent
model.learn(total_timesteps=int(1e5), callback=callback)
  • Atari游戏

在这里插入图片描述

Breakout训练好的A2C智体

在这里插入图片描述

Pong环境

幸好有make_atari_env帮助函数可以简化Atari游戏RL智体的训练。此函数可为你完成所有预处理和多重处理。

在Google Colab Notebook上测试

from stable_baselines.common.cmd_util import make_atari_env
from stable_baselines.common.vec_env import VecFrameStack
from stable_baselines import ACER# There already exists an environment generator
# that will make and wrap atari environments correctly.
# Here we are also multiprocessing training (num_env=4 => 4 processes)
env = make_atari_env('PongNoFrameskip-v4', num_env=4, seed=0)
# Frame-stacking with 4 frames
env = VecFrameStack(env, n_stack=4)model = ACER('CnnPolicy', env, verbose=1)
model.learn(total_timesteps=25000)obs = env.reset()
while True:action, _states = model.predict(obs)obs, rewards, dones, info = env.step(action)env.render()
  • Mujoco:标准化输入特征

    标准化输入特征对于RL智体的成功训练非常重要(默认情况,图像是缩放的而不是其他输入类型),比如在 Mujoco训练的时候。为此存在一个包装器,用于计算输入特征的运算均值和标准差(对奖励也可如此计算)。

    我们无法为此例提供一个notebook,因为Mujoco是一个专有引擎,需要一份许可证

    import gymfrom stable_baselines.common.policies import MlpPolicy
    from stable_baselines.common.vec_env import DummyVecEnv, VecNormalize
    from stable_baselines import PPO2env = DummyVecEnv([lambda: gym.make("Reacher-v2")])
    # Automatically normalize the input features
    env = VecNormalize(env, norm_obs=True, norm_reward=False,clip_obs=10.)model = PPO2(MlpPolicy, env)
    model.learn(total_timesteps=2000)# Don't forget to save the running average when saving the agent
    log_dir = "/tmp/"
    model.save(log_dir + "ppo_reacher")
    env.save_running_average(log_dir)
    
  • 自定义策略网络

    Stable baselines为图像(CNN策略)和其他输入类型(Mlp策略)提供默认策略网络。然而,你也可简单地定义一个自定义策略网络架构。(具体见自定义策略部分):

    import gymfrom stable_baselines.common.policies import FeedForwardPolicy
    from stable_baselines.common.vec_env import DummyVecEnv
    from stable_baselines import A2C# Custom MLP policy of three layers of size 128 each
    class CustomPolicy(FeedForwardPolicy):def __init__(self, *args, **kwargs):super(CustomPolicy, self).__init__(*args, **kwargs,net_arch=[dict(pi=[128, 128, 128], vf=[128, 128, 128])],feature_extraction="mlp")model = A2C(CustomPolicy, 'LunarLander-v2', verbose=1)
    # Train the agent
    model.learn(total_timesteps=100000)
    
  • 获取并调整模型参数

    load_parametersget_parameters函数用字典将变量名映射到Numpy数组,可通过他们获取模型参数。

    当你评估大量相同网络结构模型、可视化不同网络层、手动调参时,这些函数很有用。

    你可以用get_parameter_list实现访问原始Tensorflow变量。

    下述案例演示了读取参数、调参、通过实现解决CartPole-v1环境的演化策略来载入他们。通过对模型进行A2C策略梯度更新可获得参数的初始估计。

    import gym
    import numpy as npfrom stable_baselines.common.policies import MlpPolicy
    from stable_baselines.common.vec_env import DummyVecEnv
    from stable_baselines import A2Cdef mutate(params):"""Mutate parameters by adding normal noise to them"""return dict((name, param + np.random.normal(size=param.shape))for name, param in params.items())def evaluate(env, model):"""Return mean fitness (sum of episodic rewards) for given model"""episode_rewards = []for _ in range(10):reward_sum = 0done = Falseobs = env.reset()while not done:action, _states = model.predict(obs)obs, reward, done, info = env.step(action)reward_sum += rewardepisode_rewards.append(reward_sum)return np.mean(episode_rewards)# Create env
    env = gym.make('CartPole-v1')
    env = DummyVecEnv([lambda: env])
    # Create policy with a small network
    model = A2C(MlpPolicy, env, ent_coef=0.0, learning_rate=0.1,policy_kwargs={'net_arch': [8, ]})# Use traditional actor-critic policy gradient updates to
    # find good initial parameters
    model.learn(total_timesteps=5000)# Get the parameters as the starting point for ES
    mean_params = model.get_parameters()# Include only variables with "/pi/" (policy) or "/shared" (shared layers)
    # in their name: Only these ones affect the action.
    mean_params = dict((key, value) for key, value in mean_params.items()if ("/pi/" in key or "/shared" in key))for iteration in range(10):# Create population of candidates and evaluate thempopulation = []for population_i in range(100):candidate = mutate(mean_params)# Load new policy parameters to agent.# Tell function that it should only update parameters# we give it (policy parameters)model.load_parameters(candidate, exact_match=False)fitness = evaluate(env, model)population.append((candidate, fitness))# Take top 10% and use average over their parameters as next mean parametertop_candidates = sorted(population, key=lambda x: x[1], reverse=True)[:10]mean_params = dict((name, np.stack([top_candidate[0][name] for top_candidate in top_candidates]).mean(0))for name in mean_params.keys())mean_fitness = sum(top_candidate[1] for top_candidate in top_candidates) / 10.0print("Iteration {:<3} Mean top fitness: {:.2f}".format(iteration, mean_fitness))
    
  • 迭代策略

    这个示例展示如何训练并测试一个递归策略。

    迭代策略的一个当前限制是,你必须用与训练时相同数量的环境进行测试。

    from stable_baselines import PPO2# For recurrent policies, with PPO2, the number of environments run in parallel
    # should be a multiple of nminibatches.
    model = PPO2('MlpLstmPolicy', 'CartPole-v1', nminibatches=1, verbose=1)
    model.learn(50000)# Retrieve the env
    env = model.get_env()obs = env.reset()
    # Passing state=None to the predict function means
    # it is the initial state
    state = None
    # When using VecEnv, done is a vector
    done = [False for _ in range(env.num_envs)]
    for _ in range(1000):# We need to pass the previous state and a mask for recurrent policies# to reset lstm state when a new episode beginaction, state = model.predict(obs, state=state, mask=done)obs, reward , done, _ = env.step(action)# Note: with VecEnv, env.reset() is automatically called# Show the envenv.render()
    
  • 事后经验回放(HER)

    在此例,我们用 @eleurent提供的Highway-Env。

    在Google Colab Notebook上测试

在这里插入图片描述

parking环境是一个以目标为环境的连续控制任务,车辆必须停在划定范围内。

下述超参数是上述环境下的优化

import gym
import highway_env
import numpy as npfrom stable_baselines import HER, SAC, DDPG, TD3
from stable_baselines.ddpg import NormalActionNoiseenv = gym.make("parking-v0")# Create 4 artificial transitions per real transition
n_sampled_goal = 4# SAC hyperparams:
model = HER('MlpPolicy', env, SAC, n_sampled_goal=n_sampled_goal,goal_selection_strategy='future',verbose=1, buffer_size=int(1e6),learning_rate=1e-3,gamma=0.95, batch_size=256,policy_kwargs=dict(layers=[256, 256, 256]))# DDPG Hyperparams:
# NOTE: it works even without action noise
# n_actions = env.action_space.shape[0]
# noise_std = 0.2
# action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=noise_std * np.ones(n_actions))
# model = HER('MlpPolicy', env, DDPG, n_sampled_goal=n_sampled_goal,
#             goal_selection_strategy='future',
#             verbose=1, buffer_size=int(1e6),
#             actor_lr=1e-3, critic_lr=1e-3, action_noise=action_noise,
#             gamma=0.95, batch_size=256,
#             policy_kwargs=dict(layers=[256, 256, 256]))model.learn(int(2e5))
model.save('her_sac_highway')# Load saved model
model = HER.load('her_sac_highway', env=env)obs = env.reset()# Evaluate the agent
episode_reward = 0
for _ in range(100):action, _ = model.predict(obs)obs, reward, done, info = env.step(action)env.render()episode_reward += rewardif done or info.get('is_success', False):print("Reward:", episode_reward, "Success?", info.get('is_success', False))episode_reward = 0.0obs = env.reset()
  • 持续学习

    你还可以从一个环境的学习转移到另一个以实现连续学习(PPO2 先在DemonAttack-v0学习,然后转到SpaceInvaders-v0):

    from stable_baselines.common.cmd_util import make_atari_env
    from stable_baselines import PPO2# There already exists an environment generator
    # that will make and wrap atari environments correctly
    env = make_atari_env('DemonAttackNoFrameskip-v4', num_env=8, seed=0)model = PPO2('CnnPolicy', env, verbose=1)
    model.learn(total_timesteps=10000)obs = env.reset()
    for i in range(1000):action, _states = model.predict(obs)obs, rewards, dones, info = env.step(action)env.render()# The number of environments must be identical when changing environments
    env = make_atari_env('SpaceInvadersNoFrameskip-v4', num_env=8, seed=0)# change env
    model.set_env(env)
    model.learn(total_timesteps=10000)obs = env.reset()
    while True:action, _states = model.predict(obs)obs, rewards, dones, info = env.step(action)env.render()
    
  • 记录视频

    记录mp4格式视频(此处使用随机智体)。

    本例要求安装ffmpegavconv

    import gym
    from stable_baselines.common.vec_env import VecVideoRecorder, DummyVecEnvenv_id = 'CartPole-v1'
    video_folder = 'logs/videos/'
    video_length = 100env = DummyVecEnv([lambda: gym.make(env_id)])obs = env.reset()# Record the video starting at the first step
    env = VecVideoRecorder(env, video_folder,record_video_trigger=lambda x: x == 0, video_length=video_length,name_prefix="random-agent-{}".format(env_id))env.reset()
    for _ in range(video_length + 1):action = [env.action_space.sample()]obs, _, _, _ = env.step(action)
    env.close()
    
  • 好处:制作训练好智体的GIF图片

    对于Atari游戏,你需要用 Kazam这种屏幕录像。然后用 ffmpeg转换视频

    import imageio
    import numpy as npfrom stable_baselines.common.policies import MlpPolicy
    from stable_baselines import A2Cmodel = A2C(MlpPolicy, "LunarLander-v2").learn(100000)images = []
    obs = model.env.reset()
    img = model.env.render(mode='rgb_array')
    for i in range(350):images.append(img)action, _ = model.predict(obs)obs, _, _ ,_ = model.env.step(action)img = model.env.render(mode='rgb_array')imageio.mimsave('lander_a2c.gif', [np.array(img[0]) for i, img in enumerate(images) if i%2 == 0], fps=29)
    

这篇关于Stable Baselines/用户向导/示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861195

相关文章

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java高效实现PowerPoint转PDF的示例详解

《Java高效实现PowerPoint转PDF的示例详解》在日常开发或办公场景中,经常需要将PowerPoint演示文稿(PPT/PPTX)转换为PDF,本文将介绍从基础转换到高级设置的多种用法,大家... 目录为什么要将 PowerPoint 转换为 PDF安装 Spire.Presentation fo

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

k8s admin用户生成token方式

《k8sadmin用户生成token方式》用户使用Kubernetes1.28创建admin命名空间并部署,通过ClusterRoleBinding为jenkins用户授权集群级权限,生成并获取其t... 目录k8s admin用户生成token创建一个admin的命名空间查看k8s namespace 的

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill