理解Pointers In C++:第一重

2024-03-30 08:32
文章标签 c++ 理解 pointers 第一重

本文主要是介绍理解Pointers In C++:第一重,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • Variable vs. Pointer

int foo;
int *foo_ptr = &foo;

Grammatrically speaking, there is no such thing as a “pointer variable”: all variables are the same.

There are, however, variables with different types. foo's type is int. foo_ptr's type is int *.

The point of that is that “the pointer is not the variable!”. The pointer to foo is the contents of foo_ptr.

The pointer has a type, too, by the way. Its type is int. Thus it is an "int pointer" (a pointer to int : int *ptr).

An int **'s type is int * (it points to a pointer to int). The use of pointers to pointers is called multiple indirection.

  • Declaration syntax

  1. Multiple variables

    int *ptr_a, not_ptr_b;
    

    In this way, not_ptr_b is not a pointer. * operator belongs to the variable and not to the type, this is something that could be quite confusing.

  2. d

  • Initialization

A pointer needs to be initialized before its used if you don’t want it to use some other objects address.

When initializaing a pointer you do it with the new operator, this is called dynamic allocation as it is done in runtime and not compile time.

char * c = new char;   // dynamic alloc (one char)

A common mistake is thinking that you can use uninitialized pointers.

int *ip;
*ip = 12;   // Gives error! 

When you dynamically assign memory to objects you should be careful to return the memory by delete. If you don’t return memory it becomes a spaceleak in your program since no other object can now occupy the space you used.

delete c;	// deletes space pointer used
  • Assignment and pointers

foo_ptr = 42;

This is a wrong way. Compiler usually warn when you try to assign an int to a pointer variable. gcc will say “warning: initialization makes pointer from integer without a cast”.

  • Dereferencing (dereference operator *)

int bar = *foo_ptr;
*foo_ptr = 42; // store operation

The dereference operator * looks up the value that exists at an address.

  • Array vs. Pointers

int array[] = {45, 67, 89};
  1. decaying

    One neat feature of C is that, in most places, when you use the name array again, you will actually be using a pointer to its first element (in C temrs, &array[0]), this is called “decaying”: the array decays to a pointer.

    Decaying is an implicit &; array == &array == &array[0]. In English, these expressions read “array”, “pointer to array”, and “pointer to the first element of array” , the subscript operator [] has higher precedence than the address-of operator.

  2. Difference between array and pointer

    1. assigning to the name array
    2. passing it to the sizeof operator
  3. points

    1. passing an array to function

      When you pass an array as an argument to a function, you really pass a pointer to the array’s first element, because the array decays to a pointer. You can only give cout (which like printf in C) the pointer, not the whole array. This is why cout has no way to print an array: It would need you to tell it the type of what’s in the array and how many elements there are, and both the format string and the list of arguments would quickly get confusing.

    2. d

    3. d

  • Why do we need pointers

There is no such thing as C++ pointers. C++ is just a brand name. There are pointers. They always exist regardless of whether you’re using C++ or not. C++ grudgingly(勉强) exposes them to you; some high-level languages hide them from you. But they are always there, covertly or overtly.

Pointers Are Just Numbers.

In addition to being just number, you can also think of a pointer as being the address, or the label, of a specific byte in computer memory.

Since the pointers are the memory locations, why can’t we just remember the addresses of all the data we need, directly?

Well – honestly – until the 1980s, that is actually the way we all used to write code. When you only have 256 bytes of memory available, that’s not a lot of memory to keep track of. So we didn’t need pointers so much. You just had to remember the address of where you put evernthing, and put it there ***directly***.

But as memory got bigger, and programs got more complex, we needed some way to abstract that complexity. So now we prefer to store data ***indirectly***, using indrect addressing.

Nowadays, your cell phone has several hundred billion bytes lay around. So, code uses pointers, and pointers to pointers, and pointers to pointers to variables, and pointers to pointers to arrays of functions, and on and on like that, to keep all those code responsibilities clear.

Computers have always been very good at addressing bytes indirectly.

The assembly language of all modern CPUs lets you access data indirectly.

So, to really grok pointers, I suggest that you ignore C++ and other high level languages, and start doing a little programming in assembly language.

I know that learning assembly sounds like a huge detour, but I promise that the time you spend won’t be wasted.

Assembly programming is a pointer party, all day long.

Assembly programming is not safe, per se. There are no adults around anymore, to keep you from jabbing your own eye out with a pointer. C++ puts pointers on a high cabinet and says, clam down children, I’s the grown-up here and I will manage all the details of your pointers for you.

But assemblyy language is fast and fun as hell. When you feel the need… the need for speed… you’ll want to start manipulating pointers directly from assembly language.

  • From Wikipedia

From wikipedia, a pointer in computer science is an object that stores a memory address. This can be that of another located in computer memory, or in some cases, that of memory-mapped computer hardware.

A pointer references a location in memory, and obtaining the value stored at that location is known as dereferencing the pointer.

  1. History

    In 1955, Soviet computer scientist Kateryna Yushchenko invented the Address programming language that made possible indirect addressing and addresses of the highest rank - analogous to pointers. This language was widely used on the Soviet Union computers. However, it was unknown outside the Soviet Union and usually Harold Lawson is credited with the invention, in 1964, of the pointer.

  2. A Pointer is a kind of reference

    reference :

    In computer science, a reference is a value that enables a program to indirectly access a particular datum, such as a variable’s value or a record, in the computer’s memory or in some other storage device. The reference is said to refer to the datum, and accessing the datum is called dereferencing the reference.

    datum :

    Datum is, from its Latin origin, a singular form of “data”. From “data” in wikipedia, data are characteristics or information ,usually numberical, that are collected through observation. In a more technical sense, data is a set of values of qualitative or quantitative variables about one or more persons or objects, while a datum (singular of data) is a single value of a single variable.

    A data primitive is any datum that can be read from or written to computer memory using one memory access(for instance, both a byte and a word are primitives).

    A data aggregate is a group of primitives that are logically contiguouse in memory and that are viewed collectively as one datum. When an aggregate is entirely composed of the same type of primitive, the aggregate may be called an array.

    A byte is the smallest primitive; each memory address specifies a different byte. The memory address of the initial byte of a datum is considered the memory address (or base memory address) of the entire datum.

  • Reference

  1. cplusplus.com
  2. Everything you need to know about pointers in C
  3. How do I learn pointers in C/C++?
  4. How can I understand C++ pointers inside and out? Even after 3 semesters of C++ programming (including data structures), I still don’t fully understand how pointers work.

这篇关于理解Pointers In C++:第一重的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860988

相关文章

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

C++打印 vector的几种方法小结

《C++打印vector的几种方法小结》本文介绍了C++中遍历vector的几种方法,包括使用迭代器、auto关键字、typedef、计数器以及C++11引入的范围基础循环,具有一定的参考价值,感兴... 目录1. 使用迭代器2. 使用 auto (C++11) / typedef / type alias

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

C++11中的包装器实战案例

《C++11中的包装器实战案例》本文给大家介绍C++11中的包装器实战案例,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录引言1.std::function1.1.什么是std::function1.2.核心用法1.2.1.包装普通函数1.2.

C++多线程开发环境配置方法

《C++多线程开发环境配置方法》文章详细介绍了如何在Windows上安装MinGW-w64和VSCode,并配置环境变量和编译任务,使用VSCode创建一个C++多线程测试项目,并通过配置tasks.... 目录下载安装 MinGW-w64下载安装VS code创建测试项目配置编译任务创建 tasks.js

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf