理解Pointers In C++:第一重

2024-03-30 08:32
文章标签 c++ 理解 pointers 第一重

本文主要是介绍理解Pointers In C++:第一重,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • Variable vs. Pointer

int foo;
int *foo_ptr = &foo;

Grammatrically speaking, there is no such thing as a “pointer variable”: all variables are the same.

There are, however, variables with different types. foo's type is int. foo_ptr's type is int *.

The point of that is that “the pointer is not the variable!”. The pointer to foo is the contents of foo_ptr.

The pointer has a type, too, by the way. Its type is int. Thus it is an "int pointer" (a pointer to int : int *ptr).

An int **'s type is int * (it points to a pointer to int). The use of pointers to pointers is called multiple indirection.

  • Declaration syntax

  1. Multiple variables

    int *ptr_a, not_ptr_b;
    

    In this way, not_ptr_b is not a pointer. * operator belongs to the variable and not to the type, this is something that could be quite confusing.

  2. d

  • Initialization

A pointer needs to be initialized before its used if you don’t want it to use some other objects address.

When initializaing a pointer you do it with the new operator, this is called dynamic allocation as it is done in runtime and not compile time.

char * c = new char;   // dynamic alloc (one char)

A common mistake is thinking that you can use uninitialized pointers.

int *ip;
*ip = 12;   // Gives error! 

When you dynamically assign memory to objects you should be careful to return the memory by delete. If you don’t return memory it becomes a spaceleak in your program since no other object can now occupy the space you used.

delete c;	// deletes space pointer used
  • Assignment and pointers

foo_ptr = 42;

This is a wrong way. Compiler usually warn when you try to assign an int to a pointer variable. gcc will say “warning: initialization makes pointer from integer without a cast”.

  • Dereferencing (dereference operator *)

int bar = *foo_ptr;
*foo_ptr = 42; // store operation

The dereference operator * looks up the value that exists at an address.

  • Array vs. Pointers

int array[] = {45, 67, 89};
  1. decaying

    One neat feature of C is that, in most places, when you use the name array again, you will actually be using a pointer to its first element (in C temrs, &array[0]), this is called “decaying”: the array decays to a pointer.

    Decaying is an implicit &; array == &array == &array[0]. In English, these expressions read “array”, “pointer to array”, and “pointer to the first element of array” , the subscript operator [] has higher precedence than the address-of operator.

  2. Difference between array and pointer

    1. assigning to the name array
    2. passing it to the sizeof operator
  3. points

    1. passing an array to function

      When you pass an array as an argument to a function, you really pass a pointer to the array’s first element, because the array decays to a pointer. You can only give cout (which like printf in C) the pointer, not the whole array. This is why cout has no way to print an array: It would need you to tell it the type of what’s in the array and how many elements there are, and both the format string and the list of arguments would quickly get confusing.

    2. d

    3. d

  • Why do we need pointers

There is no such thing as C++ pointers. C++ is just a brand name. There are pointers. They always exist regardless of whether you’re using C++ or not. C++ grudgingly(勉强) exposes them to you; some high-level languages hide them from you. But they are always there, covertly or overtly.

Pointers Are Just Numbers.

In addition to being just number, you can also think of a pointer as being the address, or the label, of a specific byte in computer memory.

Since the pointers are the memory locations, why can’t we just remember the addresses of all the data we need, directly?

Well – honestly – until the 1980s, that is actually the way we all used to write code. When you only have 256 bytes of memory available, that’s not a lot of memory to keep track of. So we didn’t need pointers so much. You just had to remember the address of where you put evernthing, and put it there ***directly***.

But as memory got bigger, and programs got more complex, we needed some way to abstract that complexity. So now we prefer to store data ***indirectly***, using indrect addressing.

Nowadays, your cell phone has several hundred billion bytes lay around. So, code uses pointers, and pointers to pointers, and pointers to pointers to variables, and pointers to pointers to arrays of functions, and on and on like that, to keep all those code responsibilities clear.

Computers have always been very good at addressing bytes indirectly.

The assembly language of all modern CPUs lets you access data indirectly.

So, to really grok pointers, I suggest that you ignore C++ and other high level languages, and start doing a little programming in assembly language.

I know that learning assembly sounds like a huge detour, but I promise that the time you spend won’t be wasted.

Assembly programming is a pointer party, all day long.

Assembly programming is not safe, per se. There are no adults around anymore, to keep you from jabbing your own eye out with a pointer. C++ puts pointers on a high cabinet and says, clam down children, I’s the grown-up here and I will manage all the details of your pointers for you.

But assemblyy language is fast and fun as hell. When you feel the need… the need for speed… you’ll want to start manipulating pointers directly from assembly language.

  • From Wikipedia

From wikipedia, a pointer in computer science is an object that stores a memory address. This can be that of another located in computer memory, or in some cases, that of memory-mapped computer hardware.

A pointer references a location in memory, and obtaining the value stored at that location is known as dereferencing the pointer.

  1. History

    In 1955, Soviet computer scientist Kateryna Yushchenko invented the Address programming language that made possible indirect addressing and addresses of the highest rank - analogous to pointers. This language was widely used on the Soviet Union computers. However, it was unknown outside the Soviet Union and usually Harold Lawson is credited with the invention, in 1964, of the pointer.

  2. A Pointer is a kind of reference

    reference :

    In computer science, a reference is a value that enables a program to indirectly access a particular datum, such as a variable’s value or a record, in the computer’s memory or in some other storage device. The reference is said to refer to the datum, and accessing the datum is called dereferencing the reference.

    datum :

    Datum is, from its Latin origin, a singular form of “data”. From “data” in wikipedia, data are characteristics or information ,usually numberical, that are collected through observation. In a more technical sense, data is a set of values of qualitative or quantitative variables about one or more persons or objects, while a datum (singular of data) is a single value of a single variable.

    A data primitive is any datum that can be read from or written to computer memory using one memory access(for instance, both a byte and a word are primitives).

    A data aggregate is a group of primitives that are logically contiguouse in memory and that are viewed collectively as one datum. When an aggregate is entirely composed of the same type of primitive, the aggregate may be called an array.

    A byte is the smallest primitive; each memory address specifies a different byte. The memory address of the initial byte of a datum is considered the memory address (or base memory address) of the entire datum.

  • Reference

  1. cplusplus.com
  2. Everything you need to know about pointers in C
  3. How do I learn pointers in C/C++?
  4. How can I understand C++ pointers inside and out? Even after 3 semesters of C++ programming (including data structures), I still don’t fully understand how pointers work.

这篇关于理解Pointers In C++:第一重的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860988

相关文章

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序