决策树——(三)决策树的生成与剪枝CART

2024-03-30 00:18
文章标签 生成 决策树 剪枝 cart

本文主要是介绍决策树——(三)决策树的生成与剪枝CART,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面两篇文章分别介绍了用ID3和C4.5这两种算法来生成决策树。其中ID3算法每次用信息增益最大的特征来划分数据集,C4.5算法每次用信息增益比最大的特征来划分数据集。下面介绍另外一种采用基尼指数为标准的划分方法,CART算法。

1. CART算法

分类与回归算法(Classification and Regression Tree,CART),即可以用于分类也可以用于回归,是应用广泛的决策树学习方法。CART假设决策树是二叉树,内部结点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支。这样的决策树等价与递归地二分每个特征,将输入空间即特征空间划分为有限个单元。

CART算法由以下两步组成:
(1)决策树生成:基于训练数据集生成决策树,生成的决策树要尽量最大;
(2)决策树剪枝:用验证集对已生成的树进行剪枝并选择最优子树,这时用损失函数最小作为剪枝标准。

2. 分类树

在介绍分类树的生成算法前,我们先介绍一下划分标准基尼指数。

2.1 基尼指数

分类问题中,假设由 K K K个类,样本点属于第 k k k类的概率为 p k \large p_{\small k} pk,则概率分布的基尼指数定义为:
G i n i ( p ) = ∑ k = 1 K p k ( 1 − p k ) = 1 − ∑ k = 1 K p k 2 (2.1) Gini(p)=\sum_{k=1}^K\large p_{\small k}(1-\large p_{\small k})=1-\sum_{k=1}^K\large p_{\small k}^2\tag{2.1} Gini(p)=k=1Kpk(1pk)=1k=1Kpk2(2.1)

因此,对于给定的样本集合 D D D,其基尼指数为:
G i n i ( D ) = 1 − ∑ k = 1 K ( ∣ C k ∣ ∣ D ∣ ) 2 (2.2) Gini(D)=1-\sum_{k=1}^K\left(\frac{|C_k|}{|D|}\right)^2\tag{2.2} Gini(D)=1k=1K(DCk)2(2.2)

其中, C k C_k Ck D D D中属于地 k k k类的样本子集, K K K是类的个数。

如果样本集合 D D D根据特征 A A A是否取某一可能值 a a a被分割成 D 1 , D 2 D_1,D_2 D1,D2两个部分,即
D 1 = { ( x , y ) ∈ D ∣ A ( x ) = a } , D 2 = D − D 1 D_1=\{(x,y)\in D|A(x)=a\},D_2=D-D_1 D1={(x,y)DA(x)=a},D2=DD1

则在特征 A A A的条件下,集合 D D D的基尼指数定义为
G i n i ( D , A ) = ∣ D 1 ∣ ∣ D ∣ G i n i ( D 1 ) + ∣ D 2 ∣ ∣ D ∣ G i n i ( D 2 ) (2.3) Gini(D,A)=\frac{|D_1|}{|D|}Gini(D_1)+\frac{|D_2|}{|D|}Gini(D_2)\tag{2.3} Gini(D,A)=DD1Gini(D1)+DD2Gini(D2)(2.3)

基尼指数 G i n i ( D ) Gini(D) Gini(D)表示集合 D D D的不确定性,即表示经 A = a A=a A=a分割后集合 D D D的不确定性。基尼指数越大,样本集合的不确定性也就越大,这点与熵相似。

下图是基尼指数,熵之半 1 2 H ( p ) \frac{1}{2}H(p) 21H(p)和分类误差率之间的关系。横坐标表示概率,纵坐标表示损失。可以看出基尼指数和熵之半的曲线很接近,都可以近似的表示分类误差率。

这里写图片描述

2.2 生成算法

输入:训练数据集 D D D,停止计算条件;
输出:CART决策树

根据训练集,从根节点开始,递归地对每个结点进行一下操作,构建二叉决策树:
(1)设结点的训练集为 D D D,利用公式 ( 2.2 ) (2.2) (2.2)计算现有特征对该数据集的基尼指数。此时,对每一个特征 A A A,对其可能的每一个值 a a a,根据样本点对 A = a A=a A=a的测试值为“是”或“否”将 D D D分割成 D 1 , D 2 D_1,D_2 D1,D2两个部分,利用公式 ( 2.3 ) (2.3) (2.3)计算 A = a A=a A=a时的基尼指数;
(2)在所有可能的特征 A A A以及它们所有可能的切分点 a a a中,选择基尼指数最小的特征最为划分标准将原有数据集划分为两个部分并分配到两个子结点中去。
(3)对两个子结点递归的调用(1),(2),直到满足停止条件;
(4)生成CART决策树
其中,算法停止计算的条件是:结点中的样本点个数小于预定阈值,或样本集的基尼指数小于预定阈值(也就是说此时样本基本属于同一类),或者没有更多特征。

同样我们还是拿之前的数据集来走一遍生成流程:

I D 年龄 有工作 有自己的房子 贷款情况 类别 1 青年 否 否 一般 否 2 青年 否 否 好 否 3 青年 是 否 好 是 4 青年 是 是 一般 是 5 青年 否 否 一般 否 6 中年 否 否 一般 否 7 中年 否 否 好 否 8 中年 是 是 好 是 9 中年 否 是 非常好 是 10 中年 否 是 非常好 是 11 老年 否 是 非常好 是 12 老年 否 是 好 是 13 老年 是 否 好 是 14 老年 是 否 非常好 是 15 老年 否 否 一般 否 \begin{array}{c|cc} \hline ID&\text{年龄}&\text{有工作}&\text{有自己的房子}&\text{贷款情况}&\text{类别}\\ \hline 1&\text{青年}&\text{否}&\text{否}&\text{一般}&\text{否}\\ 2&\text{青年}&\text{否}&\text{否}&\text{好}&\text{否}\\ 3&\text{青年}&\text{是}&\text{否}&\text{好}&\text{是}\\ 4&\text{青年}&\text{是}&\text{是}&\text{一般}&\text{是}\\ 5&\text{青年}&\text{否}&\text{否}&\text{一般}&\text{否}\\ \hline 6&\text{中年}&\text{否}&\text{否}&\text{一般}&\text{否}\\ 7&\text{中年}&\text{否}&\text{否}&\text{好}&\text{否}\\ 8&\text{中年}&\text{是}&\text{是}&\text{好}&\text{是}\\ 9&\text{中年}&\text{否}&\text{是}&\text{非常好}&\text{是}\\ 10&\text{中年}&\text{否}&\text{是}&\text{非常好}&\text{是}\\ \hline 11&\text{老年}&\text{否}&\text{是}&\text{非常好}&\text{是}\\ 12&\text{老年}&\text{否}&\text{是}&\text{好}&\text{是}\\ 13&\text{老年}&\text{是}&\text{否}&\text{好}&\text{是}\\ 14&\text{老年}&\text{是}&\text{否}&\text{非常好}&\text{是}\\ 15&\text{老年}&\text{否}&\text{否}&\text{一般}&\text{

这篇关于决策树——(三)决策树的生成与剪枝CART的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860041

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

SQLServer中生成雪花ID(Snowflake ID)的实现方法

《SQLServer中生成雪花ID(SnowflakeID)的实现方法》:本文主要介绍在SQLServer中生成雪花ID(SnowflakeID)的实现方法,文中通过示例代码介绍的非常详细,... 目录前言认识雪花ID雪花ID的核心特点雪花ID的结构(64位)雪花ID的优势雪花ID的局限性雪花ID的应用场景

Django HTTPResponse响应体中返回openpyxl生成的文件过程

《DjangoHTTPResponse响应体中返回openpyxl生成的文件过程》Django返回文件流时需通过Content-Disposition头指定编码后的文件名,使用openpyxl的sa... 目录Django返回文件流时使用指定文件名Django HTTPResponse响应体中返回openp

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2