政安晨:专栏目录【TensorFlow与Keras实战演绎机器学习】

2024-03-29 15:44

本文主要是介绍政安晨:专栏目录【TensorFlow与Keras实战演绎机器学习】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras实战演绎机器学习

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本篇是作者政安晨的专栏TensorFlow与Keras实战演绎机器学习》的总纲专栏文章不断更新,这篇目录总纲也会随着专栏不断更新。


TensorFLow简述

TensorFlow给自己的定位是端到端机器学习平台,作者政安晨对TensorFlow的简述如下:

谷歌的TensorFlow是一个开源的机器学习框架,用于构建和训练各种机器学习模型

它提供了一个高度灵活和可扩展的平台,可以在多种硬件平台上运行,包括移动设备和分布式系统。

TensorFlow的核心是数据流图,它表示了模型的计算过程。

用户可以定义计算图中的各种操作和变量,并使用TensorFlow的API来进行操作。

TensorFlow提供了丰富的操作库,包括数值运算、图像处理、文本处理等。用户可以根据自己的需求选择合适的操作来构建模型。

TensorFlow还提供了强大的自动求导功能,可以自动计算模型中各个参数的梯度。这使得用户可以方便地进行优化算法的实现和训练模型。

此外,TensorFlow还具有分布式计算的能力,可以在多台机器上进行并行计算。这使得TensorFlow可以处理大规模的数据和复杂的模型。

总之,TensorFlow是一个功能强大、灵活可扩展的机器学习框架,被广泛应用于各个领域,包括计算机视觉、自然语言处理、强化学习等。

导入和使用TensorFlow其实并不难:

import tensorflow as tf

关键是如何循序渐进地入门,并针对某个具体目标开展实例,并解决问题。


Keras简述

Keras给自己的定位是一个用 Python 编写的高级神经网络 API,作者政安晨对Keras的简述如下:

Keras是一个开源的高级神经网络库,用于构建和训练深度学习模型。

它是Python编程语言的接口,能够在多种深度学习框架的后端运行,包括TensorFlow、Theano和CNTK、PyTorch等。Keras的设计目标是让用户能够快速、简单地实现和迭代神经网络模型。

Keras提供了一系列丰富的工具和功能,方便用户进行模型构建、层的堆叠、优化算法的选择和训练过程的监控等。

它提供了一种直观的、具有模块化特性的方式来定义模型,可以通过简单地将预定义的层进行堆叠和连接来创建神经网络。在模型构建的过程中,用户可以选择不同的层类型,如全连接层、卷积层、池化层等,并进行定制化的配置。

Keras还提供了一系列内置的优化算法,如随机梯度下降(SGD)、Adam、Adagrad等,用户可以根据任务的要求选择适合的优化算法。此外,Keras还提供了一些常用的损失函数和性能评估指标,如均方误差(MSE)、交叉熵(Cross-Entropy)、准确率等。

Keras的特点之一是其模块化和可扩展性。用户可以通过定制化的方式来创建自定义的层、损失函数或评估指标,并将它们与现有的Keras功能无缝集成。这种灵活性使得Keras适用于各种深度学习任务,如图像分类、自然语言处理、语音识别等。

总的来说,Keras是一个简单易用、高效灵活的机器学习库,使得构建和训练神经网络模型变得更加容易。它的设计哲学是用户友好,追求快速实现和迭代,为机器学习领域的研究人员和工程师提供了一个强大的工具。

导入和使用Keras其实并不难:

from tensorflow import keras
from tensorflow.keras import layers

关键是如何对Keras的API体系和方法有整体认识,并在实际应用中,恰当地选择解决方案。


目录摘要

目录分类根据文章对不同层次用户的使用功效划分。

入门尝试

××××××××××××××××××××××××××××××××××××××××××××××××××××××

政安晨——基于Anaconda安装TensorFlow并尝试一个神经网络小实例

政安晨——跟着演练快速理解TensorFlow(适合新手入门)

政安晨——基于Ubuntu系统的Miniconda安装TensorFlow并使用Jupyter Notebook在多个Conda虚拟环境下管理测试

政安晨——演绎一个TensorFlow官方的Keras示例(对服装图像进行分类,很全面)

政安晨——示例演绎在TensorFlow中使用 CSV数据(基于Colab的Jupyter笔记)(1.5万字长文超详细)

政安晨:【详细解析】【用TensorFlow从头实现】一个机器学习的神经网络小示例【解构演绎】

政安晨:【示例演绎】【用TensorFlow编写线性分类器】—— 同时了解一点TensorFlow与Keras的基本概念


夯实基础

×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

政安晨:示例演绎机器学习中(深度学习)神经网络的数学基础——快速理解核心概念(一){两篇文章讲清楚}

政安晨:示例演绎机器学习中(深度学习)神经网络的数学基础——快速理解核心概念(二){两篇文章讲清楚}

政安晨:示例演绎TensorFlow的官方指南(一){基础知识}

政安晨:示例演绎TensorFlow的官方指南(二){Estimator}

政安晨:示例演绎TensorFlow的官方指南(三){快速使用数据可视化工具TensorBoard}

政安晨:【示例演绎机器学习】(一)—— 剖析神经网络:学习核心的Keras API

政安晨:【示例演绎机器学习】(二)—— 神经网络的二分类问题示例(影评分类)

政安晨:【示例演绎机器学习】(三)—— 神经网络的多分类问题示例 (新闻分类)

政安晨:【示例演绎机器学习】(四)—— 神经网络的标量回归问题示例 (价格预测)

政安晨:【深度学习部署】—— TensorFlow Extended(TFX)介绍

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(一)—— 单个神经元

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(二)—— 深度神经网络

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(三)—— 随机梯度下降

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(四)—— 过拟合和欠拟合

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(五)—— Dropout和批归一化

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(六)—— 二元分类

政安晨:【Keras机器学习实践要点】(一)—— 从快速上手开始

政安晨:【Keras机器学习实践要点】(二)—— 给首次接触Keras 3 的朋友

政安晨:【Keras机器学习实践要点】(三)—— 编写组件与训练数据

政安晨:【Keras机器学习实践要点】(四)—— 顺序模型

政安晨:【Keras机器学习实践要点】(五)—— 通过子类化创建新层和模型

政安晨:【Keras机器学习实践要点】(六)—— 使用内置方法进行训练和评估

政安晨:【Keras机器学习实践要点】(七)—— 使用TensorFlow自定义fit()

政安晨:【Keras机器学习实践要点】(八)—— 在 TensorFlow 中从头开始编写训练循环


实践提高

××××××××××××××××××××××××××××××××××××××××××××××××××

政安晨:梯度与导数~示例演绎《机器学习·神经网络》的高阶理解

政安晨:【掌握AI的深度学习工具Keras API】(一)—— 【构建Keras模型的不同方法】(万字长文)

政安晨:【掌握AI的深度学习工具Keras API】(二)—— 【使用内置的训练循环和评估循环】



这篇关于政安晨:专栏目录【TensorFlow与Keras实战演绎机器学习】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858981

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Oracle Scheduler任务故障诊断方法实战指南

《OracleScheduler任务故障诊断方法实战指南》Oracle数据库作为企业级应用中最常用的关系型数据库管理系统之一,偶尔会遇到各种故障和问题,:本文主要介绍OracleSchedul... 目录前言一、故障场景:当定时任务突然“消失”二、基础环境诊断:搭建“全局视角”1. 数据库实例与PDB状态2

Git进行版本控制的实战指南

《Git进行版本控制的实战指南》Git是一种分布式版本控制系统,广泛应用于软件开发中,它可以记录和管理项目的历史修改,并支持多人协作开发,通过Git,开发者可以轻松地跟踪代码变更、合并分支、回退版本等... 目录一、Git核心概念解析二、环境搭建与配置1. 安装Git(Windows示例)2. 基础配置(必

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资