线性代数-方阵对角化及其应用

2024-03-29 14:58

本文主要是介绍线性代数-方阵对角化及其应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前置知识

1.向量的内积

对于 a = ( x 1 x 2 . . . x n ) a=\begin{pmatrix} x1 \\ x2 \\ ...\\ xn \end{pmatrix} a=x1x2...xn
b = ( y 1 y 2 . . . y n ) b=\begin{pmatrix} y1 \\ y2 \\ ...\\ yn \end{pmatrix} b=y1y2...yn
a与b的内积为[a,b] ,其中[a,b]= x 1 ∗ y 1 + x 2 ∗ y 2... + x n ∗ y n x1*y1+x2*y2...+xn*yn x1y1+x2y2...+xnyn

对于a与b的内积有以下一些基本变化

(1)交换律:[a,b]=[b,a];
(2)提取律:[ka,b]=k[a,b]
(3)拆分律:[a+b,y]=[a,y]+[b,y]
(4)0律:[a,a]>=0单且仅当a=0时等号成立

2.向量的长度(范数)

对于 a = ( x 1 x 2 . . . x n ) a=\begin{pmatrix} x1 \\ x2 \\ ...\\ xn \end{pmatrix} a=x1x2...xn
||a||称为向量a的长度,其中||a||= x 1 2 + x 2 2 + . . . + x n 2 \sqrt{x1^{2}+x2^{2}+...+xn^{2}} x12+x22+...+xn2

对于向量长度有以下一些基本性质

(1)非负性:||a||>=0;
(2)齐次性:||ka||=|k|||a||(k为常数)
(3)施瓦茨不等式 |[a,b]|<=||a|| *||b||
(4)三角不等式 ||a+b||<=||a||+||b||

单位向量

对于任意向量a,其单位向量为 a 0 = a ∣ ∣ a ∣ ∣ a_{0}=\frac{a}{||a||} a0=aa

两向量夹角

θ = a r c c o s [ a , b ] ∣ ∣ a ∣ ∣ . ∣ ∣ b ∣ ∣ \theta =arccos \frac{[a,b]}{||a||.||b||} θ=arccosa.b[a,b]

正交与正交向量组

1.正交:若两向量a与b内积为0([a,b]=0)则称两向量正交
2.正交向量组:向量组内向量两两正交则称之为正交向量组
3.标准正交向量组:正交向量组中每个向量都为单位向量则称该正交向量组为标准正交向量组
4.若两向量正交 ∣ ∣ a + b ∣ ∣ 2 = ∣ ∣ a ∣ ∣ 2 + ∣ ∣ b ∣ ∣ 2 ||a+b||^{2}=||a||^{2}+||b||^{2} a+b2=a2+b2
5.正交向量组是线性无关向量组

正交矩阵

如果n阶方阵 A T A = E A^{T}A=E ATA=E,即为 A − 1 = A T A^{-1}=A^{T} A1=AT则称A为正交矩阵

规范正交化

1.对于n阶矩阵规范正交化需要求出e1、e2…en
2. e 1 = b 1 ∣ ∣ b 1 ∣ ∣ e1=\frac{b1}{||b1||} e1=b1b1 e n = b n ∣ ∣ b n ∣ ∣ en=\frac{bn}{||bn||} en=bnbn
3.令b1=a1
4. b 2 = a 2 [ b 1 , a 2 ] [ b 1 , b 1 ] b2=a2\frac{[b1,a2]}{[b1,b1]} b2=a2[b1,b1][b1,a2]
5.对于[b1,a2]运算如下图,为两向量相乘和
6.对于bn有. b n = a n [ b 1 , a n ] [ b 1 , b 1 ] ∗ a n [ b 2 , a n ] [ b 2 , b 2 ] bn=an\frac{[b1,an]}{[b1,b1]}*an\frac{[b2,an]}{[b2,b2]} bn=an[b1,b1][b1,an]an[b2,b2][b2,an]
7.求出所有bi (1<=i<=n)后求出||bi||,其中bi为向量模长
在这里插入图片描述

求矩阵的特征值

1.寻找满足 ∣ A − λ E ∣ = 0 |A-\lambda E|=0 AλE=0其中 λ \lambda λ为矩阵特征值
2.代入式子得到矩阵,将矩阵化为半角矩阵,解得 λ \lambda λ,其中 λ \lambda λ取值看次方数,具体如图
在这里插入图片描述

求矩阵的特征向量

在这里插入图片描述

判断方阵是否与对角线相似

在这里插入图片描述

求方阵对应的对角阵A及其可逆变换矩阵

在这里插入图片描述
在这里插入图片描述

已知 P − 1 A P = A P^{-1}AP=A P1AP=A求关于A的复杂式子

在这里插入图片描述

这篇关于线性代数-方阵对角化及其应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858885

相关文章

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.