涛哥聊Python | auto-sklearn,一个非常好用的 Python 库!

2024-03-29 03:36

本文主要是介绍涛哥聊Python | auto-sklearn,一个非常好用的 Python 库!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“涛哥聊Python,仅用于学术分享,侵权删,干货满满。

原文链接:auto-sklearn,一个非常好用的 Python 库!

大家好,今天为大家分享一个非常好用的 Python 库 - auto-sklearn

Github地址:https://github.com/automl/auto-sklearn

随着机器学习技术的快速发展,越来越多的组织和个人开始利用机器学习来解决各种问题,从预测销售数据到自然语言处理和图像识别等。然而,对于许多人来说,构建高性能的机器学习模型仍然是一个具有挑战性的任务,需要深入的领域知识和繁琐的模型调优过程。

在这种情况下,自动化机器学习(AutoML)的概念应运而生。AutoML旨在简化机器学习模型的开发过程,使非专业用户也能够轻松创建高性能的模型。Python auto-sklearn库就是这样一个强大的AutoML工具,为用户提供了便捷的接口和自动化的机器学习流程。

0 安装

首先,需要安装auto-sklearn库。

可以使用pip或conda来安装:

pip install auto-sklearn

或者

conda install -c conda-forge auto-sklearn

安装完成后,就可以开始使用auto-sklearn了。

1 入门指南

1.1 基本用法

首先了解一下auto-sklearn的基本用法。将加载一个示例数据集并使用auto-sklearn进行模型训练和预测。

import pandas as pd
from sklearn.model_selection import train_test_split
from autosklearn.classification import AutoSklearnClassifier# 加载数据集
data = pd.read_csv('iris.csv')
X = data.drop('species', axis=1)
y = data['species']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建并训练auto-sklearn分类器
automl = AutoSklearnClassifier(time_left_for_this_task=60)
automl.fit(X_train, y_train)# 使用模型进行预测
predictions = automl.predict(X_test)# 输出预测结果
print(predictions)

这段代码演示了如何使用auto-sklearn进行分类任务的模型训练和预测。

1.2 模型选择与优化

auto-sklearn支持多种模型类型,包括分类、回归等。通过使用内置的超参数优化功能,可以自动选择最佳模型和参数。

from autosklearn.regression import AutoSklearnRegressor# 加载数据集
data = pd.read_csv('house_prices.csv')
X = data.drop('price', axis=1)
y = data['price']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建并训练auto-sklearn回归器
automl_regressor = AutoSklearnRegressor(time_left_for_this_task=60)
automl_regressor.fit(X_train, y_train)# 使用模型进行预测
predictions = automl_regressor.predict(X_test)# 输出预测结果
print(predictions)

这段代码展示了如何使用auto-sklearn进行回归任务的模型训练和预测,以及如何自动选择最佳模型和参数。

2 高级功能

2.1 特征工程

auto-sklearn还提供了一些特征工程的功能,可以自动处理数据集中的特征,提高模型的性能和泛化能力。

from autosklearn.feature_selection import SelectPercentileRegression
from sklearn.pipeline import Pipeline# 创建特征选择器
feature_selector = SelectPercentileRegression(percentile=50)# 创建pipeline,包括特征选择和回归模型
pipeline = Pipeline([('feature_selector', feature_selector), ('regressor', automl_regressor)])# 训练模型
pipeline.fit(X_train, y_train)# 使用模型进行预测
predictions = pipeline.predict(X_test)# 输出预测结果
print(predictions)

这段代码展示了如何使用auto-sklearn进行特征选择和回归任务,进一步提高模型的性能。

2.2 处理不平衡数据集

对于不平衡的数据集,auto-sklearn也提供了相关功能来处理,例如使用合适的评价指标、类别权重等。

from autosklearn.metrics import make_scorer
from sklearn.metrics import balanced_accuracy_score# 创建自定义的评价指标(平衡准确率)
balanced_accuracy = make_scorer(balanced_accuracy_score)# 创建auto-sklearn分类器,并指定评价指标
automl_balanced = AutoSklearnClassifier(time_left_for_this_task=60, scoring=balanced_accuracy)
automl_balanced.fit(X_train, y_train)# 使用模型进行预测
predictions_balanced = automl_balanced.predict(X_test)# 输出预测结果
print(predictions_balanced)

这段代码展示了如何使用auto-sklearn处理不平衡数据集,并使用自定义评价指标进行模型评估。

3 性能评估

auto-sklearn支持多种评价指标用于评估模型性能,例如准确率、F1分数等。同时,还可以使用交叉验证技术来验证模型的稳健性和泛化能力。

from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score# 使用测试集评估模型准确率
accuracy = accuracy_score(y_test, predictions)
print("Accuracy:", accuracy)# 使用交叉验证评估模型性能
cv_scores = cross_val_score(automl, X_train, y_train, cv=5)
print("Cross-validation scores:", cv_scores)

这段代码展示了如何使用auto-sklearn进行模型性能评估,包括准确率和交叉验证分数。

4 真实案例

4.1 示例1:分类任务

通过一个真实的分类任务示例来展示auto-sklearn的应用。

from sklearn.datasets import load_iris
from sklearn.metrics import classification_report# 加载鸢尾花数据集
iris = load_iris()
X_iris = iris.data
y_iris = iris.target# 划分训练集和测试集
X_train_iris, X_test_iris, y_train_iris, y_test_iris = train_test_split(X_iris, y_iris, test_size=0.2, random_state=42)# 创建并训练auto-sklearn分类器
automl_iris = AutoSklearnClassifier(time_left_for_this_task=60)
automl_iris.fit(X_train_iris, y_train_iris)# 使用模型进行预测
predictions_iris = automl_iris.predict(X_test_iris)# 输出分类报告
print(classification_report(y_test_iris, predictions_iris))

这段代码演示了如何使用auto-sklearn进行一个真实的分类任务,包括加载数据集、划分数据集、训练模型、进行预测并输出分类报告。

4.2 示例2:回归任务

通过一个真实的回归任务示例来展示auto-sklearn的应用。

from sklearn.datasets import load_boston
from sklearn.metrics import mean_squared_error# 加载波士顿房价数据集
boston = load_boston()
X_boston = boston.data
y_boston = boston.target# 划分训练集和测试集
X_train_boston, X_test_boston, y_train_boston, y_test_boston = train_test_split(X_boston, y_boston, test_size=0.2, random_state=42)# 创建并训练auto-sklearn回归器
automl_boston = AutoSklearnRegressor(time_left_for_this_task=60)
automl_boston.fit(X_train_boston, y_train_boston)# 使用模型进行预测
predictions_boston = automl_boston.predict(X_test_boston)# 输出均方误差
mse = mean_squared_error(y_test_boston, predictions_boston)
print("Mean Squared Error:", mse)

这段代码演示了如何使用auto-sklearn进行一个真实的回归任务,包括加载数据集、划分数据集、训练模型、进行预测并输出均方误差。

5 总结

在本文中,详细探讨了Python的auto-sklearn库,介绍了其基本用法、模型选择与优化、高级功能、性能评估以及真实案例。auto-sklearn作为一个强大的AutoML工具,为用户提供了便捷的接口和自动化的机器学习流程,大大简化了模型开发的复杂性,同时提高了模型的性能和泛化能力。

THE END!

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于涛哥聊Python | auto-sklearn,一个非常好用的 Python 库!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857496

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.