免费|Python|【需求响应】一种新的需求响应机制DR-VCG研究

2024-03-29 02:12

本文主要是介绍免费|Python|【需求响应】一种新的需求响应机制DR-VCG研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 主要内容

2 部分代码

3 程序结果

4 下载链接


主要内容

该程序对应文章《Contract Design for Energy Demand Response》,电力系统需求响应(DR)用来调节用户对电能的需求,即在预测的需求高于电能供应时,希望通过需求响应减少用户用电,从而满足系统平衡。程序实现新的需求响应模型DR-VCG,该模型提供了灵活的用户参与DR过程合同,并且通过投标活动保证收益分配和价格计算的合理性。通过实例证实该方法的有效性,可靠性显著提升,总费用明显降低。该程序采用python编写。

部分代码

import grid
import agent
import contract
import matplotlib.pyplot as plt
import time
import statistics
import pandas as pd
from datetime import datetime
​
​
​
def main():for i in range(1):M = 1000number_of_agents = 200number_of_simulation_per_lanbda = 100generator_price_multiply = 1gamma = [1.0,1.166,1.333,1.5,1.666,1.833,2]df_columns = ['actuel expanse','gamma','M','actuel kWh reduced','Met the demand']row_data_df = pd.DataFrame(columns=df_columns)
​Fixed_cont_avg_cost = []Fixed_cont_avg_reliability = []Fixed_single_cont_avg_cost = []Fixed_single_cont_avg_reliability = []T_F_List_Fixed_cont_Met_the_demand = []Fixed_cont_Total_expense = []gamma_used = []for lb in gamma:Fixed_cont_reduce_list = []for i in range(number_of_simulation_per_lanbda):start = time.time()print('iteration:',i)Grid = grid.grid(M,lb)Grid.introduce_self()Agents = []
​for num in range(number_of_agents):ag = agent.agent(num)Agents.append(ag)
​
​Contracts = []for i in range(10, M+1, 10):Contracts.append(contract.contract(i,0.3,0.5))
​
​single_contract = []single_contract.append(contract.contract(50,0.3,0.5))
​Grid.set_single_contract(single_contract)Grid.set_contract(Contracts)Grid.set_agents(Agents)Grid.send_contrects_to_agents()Grid.send_single_contrects_to_agents()
​
​for ag in Agents:ag.Fixed_cont_bid_on_contract()
​
​for ag in Agents:ag.Fixed_single_cont_bid_on_contract()
​Grid.Fixed_cont_get_bids_from_agent()Grid.Fixed_cont_generator_bids(price_multiply=generator_price_multiply)Grid.Fixed_cont_get_q_from_agent()Fixed_cont_sum_of_bids = Grid.knapsack(bids_type='Fixed_cont')Grid.Fixed_cont_pay_to_agents(Fixed_cont_sum_of_bids)Grid.Fixed_cont_reliability()Grid.Fixed_single_cont_get_bids_from_agent()Grid.Fixed_single_cont_get_q_from_agent()
​
​Fixed_cont_Total_expense.append(Grid.Fixed_cont_Total_expense_sum)Fixed_cont_reduce_list.append(Grid.Fixed_cont_reliability_sum_q)if Grid.Fixed_cont_reliability_sum_q >= Grid.M:met_the_demand = 1else:met_the_demand = 0T_F_List_Fixed_cont_Met_the_demand.append(met_the_demand)print('Fixed_cont- Met_the_demand: ', T_F_List_Fixed_cont_Met_the_demand)print('Fixed_cont- Total_expense: ', Fixed_cont_Total_expense)gamma_used.append(lb)
​
​row_data_df = row_data_df.append(pd.DataFrame({'actuel expanse':[Grid.Fixed_cont_Total_expense_sum],'gamma':[lb],'M': [M],'actuel kWh reduced': [Grid.Fixed_cont_reliability_sum_q],'Met the demand': [met_the_demand]}))end = time.time()print('iteration took:', (end - start), 'sec')print('-'*200)Fixed_cont_avg_cost.append(statistics.mean(Fixed_cont_Total_expense))if len(T_F_List_Fixed_cont_Met_the_demand) > 0:Fixed_cont_avg_reliability.append(T_F_List_Fixed_cont_Met_the_demand.count(True) / len(T_F_List_Fixed_cont_Met_the_demand))else:Fixed_cont_avg_reliability.append(0.0)
​filename = datetime.now().strftime('data/energy_demamd_row_data-%Y-%m-%d-%H-%M-%S.csv')row_data_df.to_csv(filename,index=False)graph_it(Fixed_cont_avg_reliability,Fixed_single_cont_avg_reliability, Fixed_cont_avg_cost,Fixed_single_cont_avg_cost)
​
def graph_it(Fixed_cont_avg_reliability =[],Fixed_single_cont_avg_reliability=[],Fixed_cont_avg_cost=[],Fixed_single_cont_avg_cost=[]):plt.rcParams["figure.figsize"] = (8, 8)fig, ax = plt.subplots()
​ax.plot(Fixed_cont_avg_reliability, Fixed_cont_avg_cost, color='blue',marker='o',label="fixed multiple cont")ax.plot(Fixed_single_cont_avg_reliability, Fixed_single_cont_avg_cost, color='black',marker='o', label="fixed single cont")ax.set(xlabel="Total_Reliability", ylabel="expenses ($)", title="(a)n= 400")fig.savefig("test.png")
​
​
​
if __name__ == "__main__":main()plt.show()

程序结果

原文结果图:

4 下载链接

这篇关于免费|Python|【需求响应】一种新的需求响应机制DR-VCG研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857322

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部