利用repartition和mapPartitions替代reduce功能

2024-03-28 15:18

本文主要是介绍利用repartition和mapPartitions替代reduce功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据:用户,时间,地点 样例:

10001,20190401 14:20:06,20000000010000010000000000048793
10002,20190612 00:36:24,00000001000000050000000000181362
10002,20190612 01:49:05,00000001000000050000000000181362

需求统计:用户在每个地点的停留时长 如果相邻记录的地点不一致,时长累加在前一个地点上。

正常流程是根据用户id分组,根据时间戳升序排列,遍历记录相邻记录时间戳相减,得到停留时长,再做累加。

这个需求正好符合spark里面 repartitionAndSortWithinPartitions 算子的使用功能。

 

import util.DateFormat
import org.apache.spark.{Partitioner, SparkConf, SparkContext}
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{DataTypes, StructField, StructType}object Test {def main(args: Array[String]): Unit = {//读取Spark Application 的配置信息val sparkConf = new SparkConf()//设置SparkApplication名称.setAppName("ModuleSpark Application").setMaster("local[2]")val sc = SparkContext.getOrCreate(sparkConf)val spark = SparkSession.builder.config(sparkConf).getOrCreate()val hadoopConf = sc.hadoopConfigurationval schema = StructType(Array(StructField("user_id", DataTypes.StringType),StructField("start_time", DataTypes.StringType),StructField("content_id", DataTypes.StringType)))//读入数据的时候可以直接加schema参数 同样可以利用csv直接切分val testRDD = spark.read.option("delimiter", ",").schema(schema).csv("localtest/input/userTimeLineDir/test.txt")//替换默认的排序 repartition中默认使用到orderingimplicit val my_self_Ordering = new Ordering[Tuple2[String,String]] {override def compare(a: Tuple2[String,String], b: Tuple2[String,String]): Int = {if(a._1 == b._1){a._2.compareTo(b._2)}else{a._1.compareTo(a._2)}}}//数据分区依据,分区时使用默认排序class KeyBasePartitioner(partitions: Int) extends Partitioner {//分区数override def numPartitions: Int = partitionsoverride def getPartition(key: Any): Int = {val k = key.asInstanceOf[Tuple2[String,String]]Math.abs(k._1.hashCode() % numPartitions)}}//特殊迭代器生成,直接生成结果数据的迭代器 尽量避免OOM//不可更改迭结果的记录条数class CustomIterator(iter: Iterator[((String,String),Row)]) extends Iterator[Row] {var lastUser:String = null;var lasttime:String = null;def hasNext : Boolean={iter.hasNext}def next :Row={val cur:((String,String),Row)=iter.nextval user = cur._2.getString(0)val contentid = cur._2.getString(2)val starttime = cur._2.getString(1)if(lastUser == null || lastUser != user ){lastUser = userlasttime = starttimeRow("3","4","5")}else{val dura = DateFormat.dateToTimestamp(starttime,"yyyyMMdd HH:mm:ss") - DateFormat.dateToTimestamp(lasttime,"yyyyMMdd HH:mm:ss")lastUser = userlasttime = starttimeRow(user,contentid,dura)}}}val result = testRDD.rdd.map( x =>((x.getString(0),x.getString(1)) ,x)).repartitionAndSortWithinPartitions(new KeyBasePartitioner(10)).mapPartitions(v => new CustomIterator(v))result.collect();result.saveAsTextFile("localtest/output")}
}

1 利用spark的参数设置,直接生成固定格式的DataSet

spark.read.csv可以直接根据分隔符将读取的文件分列,通过设置option("delimiter",",")改变分隔符,通过.schema()直接设置读取的内容格式。

 

2 利用Ordering和Partitioner对数据进行重排序

排序工作在分区的时候一起进行,所有需要排序的内容都要并入key值。(疑惑点在这里,如果把时间戳并入key值,之后的reduce操作就需要重新map一次,重新分配key值userid,但在这个过程中,无法保证数据的排列顺序,而且正常reduce需要再一次触发shuffle操作,达不到优化的效果,所以这边选择采用MapPartitions来避免reduce。)

Ordering的排序是默认进行的,当重写了Ordering方法之后,默认使用重写后的方法进行排序。代码中按userid降序时间戳升序。

repartitionAndSortWithinPartitions对原始数据进行重新分区,分区时用到了自定义的Parititioner,注意分区时只用了userid字段,字段顺序按照定义的Ordering排列。

 

3 利用MapPartitions遍历记录,替换reduce效果

Map和MapPartitions区别:map算子中的执行命令针对每一条记录调用一次(不确定有没有内部优化),mappartitions算子针对每个分区记录调用一次。一般来说,使用MapPartitions的时候先获取一个包含分区内所有记录的迭代器,依次遍历,计算结果存储到List等集合容器,返回容器的迭代器。整个过程中如果分区中结果数据的数据量量太大,容易爆内存。但是MapPartitions的优点在于,可以很方便的使用外部变量,减少初始化的次数,也可以联系上下记录。

例如在计算停留时长,外部变量保留上条记录的用户编号和时间戳,如果用户编号相同,时间戳相减;用户编号不同,更新用户编号和时间戳(正常可以通过迭代器直接返回需要的结果,问题是分区内包含大量不同用户的数据,如果数据量过大,可能爆内存)。

有个替换方法是,继承迭代器的子类,传入原始数据(MapPartitions的迭代器),直接生成包含正确结果的迭代器返回,避免使用存储结果的集合容器。(不过这样做的缺点是,返回的数据没有办法控制记录条数,和输入的记录条数一模一样,如果是删除某些记录,可以用filter,但如果是增加部分记录,没想到处理办法。)

 

参考文章

你真知道如何高效用mapPartitions吗? https://blog.csdn.net/rlnLo2pNEfx9c/article/details/81613035

How to Use Spark Transformations Efficiently for MapReduce-like Jobs https://technology.finra.org/code/using-spark-transformations-for-mpreduce-jobs.html

这篇关于利用repartition和mapPartitions替代reduce功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855961

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

C#实现高性能拍照与水印添加功能完整方案

《C#实现高性能拍照与水印添加功能完整方案》在工业检测、质量追溯等应用场景中,经常需要对产品进行拍照并添加相关信息水印,本文将详细介绍如何使用C#实现一个高性能的拍照和水印添加功能,包含完整的代码实现... 目录1. 概述2. 功能架构设计3. 核心代码实现python3.1 主拍照方法3.2 安全HBIT

录音功能在哪里? 电脑手机等设备打开录音功能的技巧

《录音功能在哪里?电脑手机等设备打开录音功能的技巧》很多时候我们需要使用录音功能,电脑和手机这些常用设备怎么使用录音功能呢?下面我们就来看看详细的教程... 我们在会议讨论、采访记录、课堂学习、灵感创作、法律取证、重要对话时,都可能有录音需求,便于留存关键信息。下面分享一下如何在电脑端和手机端上找到录音功能

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

基于Java和FFmpeg实现视频压缩和剪辑功能

《基于Java和FFmpeg实现视频压缩和剪辑功能》在视频处理开发中,压缩和剪辑是常见的需求,本文将介绍如何使用Java结合FFmpeg实现视频压缩和剪辑功能,同时去除数据库操作,仅专注于视频处理,需... 目录引言1. 环境准备1.1 项目依赖1.2 安装 FFmpeg2. 视频压缩功能实现2.1 主要功

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php