利用repartition和mapPartitions替代reduce功能

2024-03-28 15:18

本文主要是介绍利用repartition和mapPartitions替代reduce功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据:用户,时间,地点 样例:

10001,20190401 14:20:06,20000000010000010000000000048793
10002,20190612 00:36:24,00000001000000050000000000181362
10002,20190612 01:49:05,00000001000000050000000000181362

需求统计:用户在每个地点的停留时长 如果相邻记录的地点不一致,时长累加在前一个地点上。

正常流程是根据用户id分组,根据时间戳升序排列,遍历记录相邻记录时间戳相减,得到停留时长,再做累加。

这个需求正好符合spark里面 repartitionAndSortWithinPartitions 算子的使用功能。

 

import util.DateFormat
import org.apache.spark.{Partitioner, SparkConf, SparkContext}
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{DataTypes, StructField, StructType}object Test {def main(args: Array[String]): Unit = {//读取Spark Application 的配置信息val sparkConf = new SparkConf()//设置SparkApplication名称.setAppName("ModuleSpark Application").setMaster("local[2]")val sc = SparkContext.getOrCreate(sparkConf)val spark = SparkSession.builder.config(sparkConf).getOrCreate()val hadoopConf = sc.hadoopConfigurationval schema = StructType(Array(StructField("user_id", DataTypes.StringType),StructField("start_time", DataTypes.StringType),StructField("content_id", DataTypes.StringType)))//读入数据的时候可以直接加schema参数 同样可以利用csv直接切分val testRDD = spark.read.option("delimiter", ",").schema(schema).csv("localtest/input/userTimeLineDir/test.txt")//替换默认的排序 repartition中默认使用到orderingimplicit val my_self_Ordering = new Ordering[Tuple2[String,String]] {override def compare(a: Tuple2[String,String], b: Tuple2[String,String]): Int = {if(a._1 == b._1){a._2.compareTo(b._2)}else{a._1.compareTo(a._2)}}}//数据分区依据,分区时使用默认排序class KeyBasePartitioner(partitions: Int) extends Partitioner {//分区数override def numPartitions: Int = partitionsoverride def getPartition(key: Any): Int = {val k = key.asInstanceOf[Tuple2[String,String]]Math.abs(k._1.hashCode() % numPartitions)}}//特殊迭代器生成,直接生成结果数据的迭代器 尽量避免OOM//不可更改迭结果的记录条数class CustomIterator(iter: Iterator[((String,String),Row)]) extends Iterator[Row] {var lastUser:String = null;var lasttime:String = null;def hasNext : Boolean={iter.hasNext}def next :Row={val cur:((String,String),Row)=iter.nextval user = cur._2.getString(0)val contentid = cur._2.getString(2)val starttime = cur._2.getString(1)if(lastUser == null || lastUser != user ){lastUser = userlasttime = starttimeRow("3","4","5")}else{val dura = DateFormat.dateToTimestamp(starttime,"yyyyMMdd HH:mm:ss") - DateFormat.dateToTimestamp(lasttime,"yyyyMMdd HH:mm:ss")lastUser = userlasttime = starttimeRow(user,contentid,dura)}}}val result = testRDD.rdd.map( x =>((x.getString(0),x.getString(1)) ,x)).repartitionAndSortWithinPartitions(new KeyBasePartitioner(10)).mapPartitions(v => new CustomIterator(v))result.collect();result.saveAsTextFile("localtest/output")}
}

1 利用spark的参数设置,直接生成固定格式的DataSet

spark.read.csv可以直接根据分隔符将读取的文件分列,通过设置option("delimiter",",")改变分隔符,通过.schema()直接设置读取的内容格式。

 

2 利用Ordering和Partitioner对数据进行重排序

排序工作在分区的时候一起进行,所有需要排序的内容都要并入key值。(疑惑点在这里,如果把时间戳并入key值,之后的reduce操作就需要重新map一次,重新分配key值userid,但在这个过程中,无法保证数据的排列顺序,而且正常reduce需要再一次触发shuffle操作,达不到优化的效果,所以这边选择采用MapPartitions来避免reduce。)

Ordering的排序是默认进行的,当重写了Ordering方法之后,默认使用重写后的方法进行排序。代码中按userid降序时间戳升序。

repartitionAndSortWithinPartitions对原始数据进行重新分区,分区时用到了自定义的Parititioner,注意分区时只用了userid字段,字段顺序按照定义的Ordering排列。

 

3 利用MapPartitions遍历记录,替换reduce效果

Map和MapPartitions区别:map算子中的执行命令针对每一条记录调用一次(不确定有没有内部优化),mappartitions算子针对每个分区记录调用一次。一般来说,使用MapPartitions的时候先获取一个包含分区内所有记录的迭代器,依次遍历,计算结果存储到List等集合容器,返回容器的迭代器。整个过程中如果分区中结果数据的数据量量太大,容易爆内存。但是MapPartitions的优点在于,可以很方便的使用外部变量,减少初始化的次数,也可以联系上下记录。

例如在计算停留时长,外部变量保留上条记录的用户编号和时间戳,如果用户编号相同,时间戳相减;用户编号不同,更新用户编号和时间戳(正常可以通过迭代器直接返回需要的结果,问题是分区内包含大量不同用户的数据,如果数据量过大,可能爆内存)。

有个替换方法是,继承迭代器的子类,传入原始数据(MapPartitions的迭代器),直接生成包含正确结果的迭代器返回,避免使用存储结果的集合容器。(不过这样做的缺点是,返回的数据没有办法控制记录条数,和输入的记录条数一模一样,如果是删除某些记录,可以用filter,但如果是增加部分记录,没想到处理办法。)

 

参考文章

你真知道如何高效用mapPartitions吗? https://blog.csdn.net/rlnLo2pNEfx9c/article/details/81613035

How to Use Spark Transformations Efficiently for MapReduce-like Jobs https://technology.finra.org/code/using-spark-transformations-for-mpreduce-jobs.html

这篇关于利用repartition和mapPartitions替代reduce功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/855961

相关文章

SpringCloud使用Nacos 配置中心实现配置自动刷新功能使用

《SpringCloud使用Nacos配置中心实现配置自动刷新功能使用》SpringCloud项目中使用Nacos作为配置中心可以方便开发及运维人员随时查看配置信息,及配置共享,并且Nacos支持配... 目录前言一、Nacos中集中配置方式?二、使用步骤1.使用$Value 注解2.使用@Configur

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

SpringBoot后端实现小程序微信登录功能实现

《SpringBoot后端实现小程序微信登录功能实现》微信小程序登录是开发者通过微信提供的身份验证机制,获取用户唯一标识(openid)和会话密钥(session_key)的过程,这篇文章给大家介绍S... 目录SpringBoot实现微信小程序登录简介SpringBoot后端实现微信登录SpringBoo

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue

Java如何用乘号来重复字符串的功能

《Java如何用乘号来重复字符串的功能》:本文主要介绍Java使用乘号来重复字符串的功能,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java乘号来重复字符串的功能1、利用循环2、使用StringBuilder3、采用 Java 11 引入的String.rep

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

在React聊天应用中实现图片上传功能

《在React聊天应用中实现图片上传功能》在现代聊天应用中,除了文字和表情,图片分享也是一个重要的功能,本文将详细介绍如何在基于React的聊天应用中实现图片上传和预览功能,感兴趣的小伙伴跟着小编一起... 目录技术栈实现步骤1. 消息组件改造2. 图片预览组件3. 聊天输入组件改造功能特点使用说明注意事项

基于Redis实现附近商铺查询功能

《基于Redis实现附近商铺查询功能》:本文主要介绍基于Redis实现-附近商铺查询功能,这个功能将使用到Redis中的GEO这种数据结构来实现,需要的朋友可以参考下... 目录基于Redis实现-附近查询1.GEO相关命令2.使用GEO来实现以下功能3.使用Java实现简China编程单的附近商铺查询4.Red

使用Python实现实时金价监控并自动提醒功能

《使用Python实现实时金价监控并自动提醒功能》在日常投资中,很多朋友喜欢在一些平台买点黄金,低买高卖赚点小差价,但黄金价格实时波动频繁,总是盯着手机太累了,于是我用Python写了一个实时金价监控... 目录工具能干啥?手把手教你用1、先装好这些"食材"2、代码实现讲解1. 用户输入参数2. 设置无头浏

POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能

《POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能》ApachePOI是一个流行的Java库,用于处理MicrosoftOffice格式文件,提供丰富API来创建、读取和修改O... 目录前言:Apache POIEasyPoiEasyExcel一、EasyExcel1.1、核心特性