深度学习中的Encoder-Decoder框架(编码器-解码器框架)

2024-03-28 09:52

本文主要是介绍深度学习中的Encoder-Decoder框架(编码器-解码器框架),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习中的Encoder-Decoder框架(编码器-解码器框架)

  • 一、概述
  • 二、介绍

一、概述

Encoder-Decoder框架可以看作是一种深度学习领域的研究模式,应用场景异常广泛。图1是文本处理领域里常用的Encoder-Decoder框架最抽象的一种表示。

图1 文本处理领域的Encoder-Decoder框架
图1 文本处理领域的Encoder-Decoder框架

二、介绍

文本处理领域的Encoder-Decoder框架可以这么直观地去理解:可以把它看作适合处理由一个句子(或篇章)生成另外一个句子(或篇章)的通用处理模型。对于句子对 ( S o u r c e , T a r g e t ) (Source,Target) (Source,Target),我们的目标是给定输入句子 S o u r c e Source Source,期待通过Encoder-Decoder框架来生成目标句子 T a r g e t Target Target S o u r c e Source Source T a r g e t Target Target 可以是同一种语言,也可以是两种不同的语言。而 S o u r c e Source Source T a r g e t Target Target 分别由各自的单词序列构成:

S o u r c e = ⟨ x 1 , x 2 … x m ⟩ Source =\langle\mathbf{x_1},\mathbf{x_2}\ldots\mathbf{x_m}\rangle Source=x1,x2xm
T a r g e t = ⟨ y 1 , y 2 … y n ⟩ Target=\langle\mathbf{y_1},\mathbf{y_2}\ldots\mathbf{y_n}\rangle Target=y1,y2yn

Encoder顾名思义就是对输入句子 S o u r c e Source Source 进行编码,将输入句子通过非线性变换转化为中间语义表示 C C C

C = F ( x 1 , x 2 … x m ) \mathbf{C}={\mathcal F}(\mathbf{x_{1}},\mathbf{x_{2}}\ldots\mathbf{x_{m}}) C=F(x1,x2xm)

对于解码器Decoder来说,其任务是根据句子 S o u r c e Source Source 的中间语义表示 C C C 和之前已经生成的历史信息

y 1 , y 2 … y i − 1 \mathbf{y_1},\mathbf{y_2}\ldots\mathbf{y_{i-1}} y1,y2yi1,来生成i时刻要生成的单词 y i \mathbf{y_i} yi

每个 y i \mathbf{y_i} yi 都依次这么产生,那么看起来就是整个系统根据输入句子 S o u r c e Source Source 生成了目标句子 T a r g e t Target Target。如果 S o u r c e Source Source 是中文句子, T a r g e t Target Target 是英文句子,那么这就是解决机器翻译问题的Encoder-Decoder框架;如果 S o u r c e Source Source 是一篇文章, T a r g e t Target Target 是概括性的几句描述语句,那么这是文本摘要的Encoder-Decoder框架;如果 S o u r c e Source Source 是一句问句, T a r g e t Target Target 是一句回答,那么这是问答系统或者对话机器人的Encoder-Decoder框架。由此可见,在文本处理领域,Encoder-Decoder的应用领域相当广泛。

Encoder-Decoder框架不仅仅在文本领域广泛使用,在语音识别、图像处理等领域也经常使用。比如对于语音识别来说,图1所示的框架完全适用,区别无非是Encoder部分的输入是语音流,Decoder部分的输出是对应的文本信息;而对于“图像描述”任务来说,Encoder部分的输入是一副图片,Decoder的输出是能够描述图片语义内容的一句描述语。一般而言,文本处理和语音识别的Encoder部分通常采用RNN模型,图像处理的Encoder一般采用CNN模型。

这篇关于深度学习中的Encoder-Decoder框架(编码器-解码器框架)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855276

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷