【深度学习】图片预处理,分辨出模糊图片

2024-03-28 06:04

本文主要是介绍【深度学习】图片预处理,分辨出模糊图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ref:https://pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
论文 ref:https://www.cse.cuhk.edu.hk/leojia/all_final_papers/blur_detect_cvpr08.pdf
遇到模糊的图片,还要处理一下,把它挑出来,要么修复,要么弃用。否则影响后续效果。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

根据模糊值排序即可,写在文件名中,自动排序,然后对模糊的去掉即可

import os.pathfrom imutils import paths
import argparse
import cv2
import shutildef variance_of_laplacian(image):# compute the Laplacian of the image and then return the focus# measure, which is simply the variance of the Laplacianreturn cv2.Laplacian(image, cv2.CV_64F).var()# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--images", default=r"D:\dataset\imgs_bk\imgs_bk",help="path to input directory of images")
ap.add_argument("-t", "--threshold", type=float, default=400.0,help="focus measures that fall below this value will be considered 'blurry'")
args = vars(ap.parse_args())
count_num = 0
for imagePath in paths.list_images(args["images"]):# load the image, convert it to grayscale, and compute the# focus measure of the image using the Variance of Laplacian# methodimage = cv2.imread(imagePath)gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)fm = variance_of_laplacian(gray)text = "Not Blurry"print("res:", imagePath, fm)# if the focus measure is less than the supplied threshold,# then the image should be considered "blurry"# for threshold in [100, 200, 300, 400, 500]:# if fm < threshold:# text = "Blurry"# # show the image# cv2.putText(image, "{}: {:.2f}".format(text, fm), (10, 30),#             cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)# # cv2.imshow("Image", image)_, file_name = os.path.split(imagePath)# dst_dir = r"D:\code\baidu-spider\blur_img"# os.makedirs(dst_dir, exist_ok=True)# dst_path = os.path.join(dst_dir, str(fm) + "-" + file_name)# cv2.imwrite(dst_path, image)dst_path_blank = os.path.join(r"D:\dataset\blank-blur-order", str(fm) + '-' + file_name)shutil.copy(imagePath, dst_path_blank)count_num += 1# key = cv2.waitKey(0)

本质是一个拉普拉斯变换!!
还挺好用的。
我感觉300,400的阈值,就会好很多了。

这篇关于【深度学习】图片预处理,分辨出模糊图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/854665

相关文章

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

c/c++的opencv实现图片膨胀

《c/c++的opencv实现图片膨胀》图像膨胀是形态学操作,通过结构元素扩张亮区填充孔洞、连接断开部分、加粗物体,OpenCV的cv::dilate函数实现该操作,本文就来介绍一下opencv图片... 目录什么是图像膨胀?结构元素 (KerChina编程nel)OpenCV 中的 cv::dilate() 函

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实