和GCD相关的“个数”及“求和”问题——hdu 2588、nyist 1007

2024-03-27 22:48

本文主要是介绍和GCD相关的“个数”及“求和”问题——hdu 2588、nyist 1007,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

hdu 2588 GCD

http://acm.hdu.edu.cn/showproblem.php?pid=2588
大意:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
分析:已知(a,b)=k  --> (a/k, b/k)=1
所以,问题即是求解有多少个x,满足 (n/k, x/k)=1 且k>=m, 1<=x<=n
那么,需要枚举公约数k,然后欧拉函数。

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const int N=1e5+10;
int prim[N],cnt;
bool vis[N];
void getpri(){for(int i=2;i<N;i++){if(!vis[i]) prim[cnt++]=i;for(int j=0;j<cnt&&prim[j]*i<N;j++){vis[prim[j]*i]=1;if(i%prim[j]==0) break;}}
}
int Euler(int a){if(a==1) return 1;int ans=a;for(int i=0;i<cnt&&prim[i]<=a;i++){if(a%prim[i]==0) {ans=ans-ans/prim[i];while(a%prim[i]==0) a/=prim[i];}}if(a>1) ans=ans-ans/a;return ans;
}
int main()
{getpri();int t;int n,m;cin>>t;while(t--){scanf("%d%d",&n,&m);int len=(int)sqrt(n);int ans=0;for(int i=1;i<=len;i++){if(n%i==0){if(i>=m){ans=ans+Euler(n/i);}if(n/i!=i && n/i>=m){ans=ans+Euler(i);}//cout<<i<<": "<<ans<<endl;}}printf("%d\n",ans);}return 0;
}

nyist 1007 GCD

http://acm.nyist.net/JudgeOnline/problem.php?pid=1007
大意:和hdu 2588 差不多,不过需要求解x的和,而非个数

分析:看这样一个子问题,n=24, k=2, 那么x可以等于
2 , 10 ,14 , 22
x全部除以2,即成 
1 , 5 , 7 , 11
这刚好是n/k=24/2=12的欧拉函数的成员
他们的和等于多少呢?
 1+11=12
 5+7=12
12*2=24
也即
将这个2推广成公式,即
所以,和n的最大公约数是k的x的和等于
检测了一下,1——1e6内欧拉函数是奇数的只有1和2
用此公式可以解决n/k=2的情况,但是n=k的情况需要特殊处理。

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const int N=1e5+10,mod=1000000007;
typedef long long LL;
int prim[N],cnt;
bool vis[N];void getpri(){cnt=0;for(int i=2;i<N;i++){if(!vis[i]) prim[cnt++]=i;for(int j=0;j<cnt&&prim[j]*i<N;j++){vis[prim[j]*i]=1;if(i%prim[j]==0) break;}}
}int Euler(int a){if(a==1) return 1;int ans=a;for(int i=0;i<cnt&&prim[i]<=a;i++){if(a%prim[i]==0) {ans=ans-ans/prim[i];while(a%prim[i]==0) a/=prim[i];}}if(a>1) ans=ans-ans/a;return ans;
}int main()
{getpri();int t;LL n,m;cin>>t;while(t--){scanf("%lld%lld",&n,&m);LL ans=0LL;int len=(int)sqrt(n);for(int i=1;i<=len;i++){if(n%i==0){if(i>=m){if(i==n) ans=(ans+n)%mod;else ans=(ans+n*Euler(n/i)/2)%mod;}if(n/i!=i && n/i>=m) {if(n/i==n) ans=(ans+n)%mod;else ans=(ans+n*Euler(i)/2)%mod;}//cout<<i<<": "<<ans<<endl;}}printf("%lld\n",ans);}return 0;
}




这篇关于和GCD相关的“个数”及“求和”问题——hdu 2588、nyist 1007的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/853655

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.