PSP - 配置 AlphaFold2 的高效 Tensorflow 运行环境

2024-03-27 15:50

本文主要是介绍PSP - 配置 AlphaFold2 的高效 Tensorflow 运行环境,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/130560538

AF2

AlphaFold2 是由 DeepMind 开发,可以根据蛋白质的氨基酸序列预测其三维结构,准确度经常可以与实验相媲美。DeepMind 和 EMBL 的欧洲生物信息学研究所合作,创建AlphaFold DB,免费向科学界提供这些预测结果。最新的数据库版本,包含了超过 200 万种蛋白质的结构预测,涵盖人类和其他 20 多种物种的蛋白质组。AlphaFold2 的核心是基于神经网络的计算模型,结合了蛋白质的物理和生物学知识,利用多序列比对(MSA)所设计出的深度学习算法。

1. Docker 环境

命令如下:

# 启动 nvidia-docker 环境
nvidia-docker run -it --name [docker-name] -v [...]:[...] [nvidia-base]:v1.0# 配置 conda
bash Miniconda3-py38_4.10.3-Linux-x86_64.sh
source ~/.bashrc# 创建 alphafold 环境
conda create --name alphafold python==3.8
conda update -n base conda
conda activate alphafold# 配置 conda 库
conda install -y -c conda-forge openmm==7.5.1 cudatoolkit==11.2.2 pdbfixer
conda install -y -c bioconda hmmer hhsuite==3.3.0 kalign2# 再次更新
conda install -y -c conda-forge openmm==7.7.0 
conda install -y -c conda-forge pdbfixer==1.8.1# 配置 pip 库, tensorflow-gpu 或 tensorflow-cpu,根据机器选择
pip install absl-py==1.0.0 biopython==1.79 chex==0.0.7 dm-haiku==0.0.9 dm-tree==0.1.6 immutabledict==2.0.0 jax==0.3.25 ml-collections==0.1.0 numpy==1.21.6 pandas==1.3.4 protobuf==3.20.1 scipy==1.7.0 tensorflow-gpu==2.9.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/# 配置 pip jax 库
pip install --upgrade --no-cache-dir jax==0.3.25 jaxlib==0.3.25+cuda11.cudnn805 -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html# 导出环境
export alphafold_path="$(pwd)"# 下载配置文件
wget -q -P $alphafold_path/alphafold/common/ https://git.scicore.unibas.ch/schwede/openstructure/-/raw/7102c63615b64735c4941278d92b554ec94415f8/modules/mol/alg/src/stereo_chemical_props.txt# 配置 openmm.patch
git checkout v2.3.1  # 最新版本删除 openmm.patch
cd ~/miniconda3/envs/alphafold/lib/python3.8/site-packages/
patch -p0 < $alphafold_path/docker/openmm.patch

测试 Tensorflow 是否安装成功,以及 GPU 是否启动:

python3  # 进入命令行import tensorflow as tfprint(f"is_gpu_available: {tf.test.is_gpu_available()}")
gpu_device_name = tf.test.gpu_device_name()
print(f"gpu_device_name: {gpu_device_name}")from tensorflow.python.client import device_lib 
# 列出所有的本地机器设备
local_device_protos = device_lib.list_local_devices()
# 只打印GPU设备
print(x) for x in local_device_protos if x.device_type == 'GPU'

保存和复用 docker,命令如下:

# 保存环境
docker ps -l
docker commit [container-id] af2:v1.0
docker save af2:v1.0 | gzip > af2_v1.tar.gz# 加载环境
docker image load -i af2_v1.tar.gz
nvidia-docker run -it --name [docker-name] -v [...]:[...] af2:v1.0

如需更换 Tensorflow 的 CPU 或 GPU 配置,先卸载再更新即可:

pip uninstall tensorflow-cpu tensorflow-estimator tensorflow-io-gcs-filesystem
pip install tensorflow-gpu==2.9.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/

Bug1: OpenMM 相关 Bug

如遇 OpenMM Bug,以及解决方案:

openmm Bug 1: conda install -c conda-forge openmm==7.7.0

Traceback (most recent call last):File "run_alphafold.py", line 41, in <module>from alphafold.relax import relaxFile "alphafold/relax/relax.py", line 18, in <module>from alphafold.relax import amber_minimizeFile "alphafold/relax/amber_minimize.py", line 25, in <module>from alphafold.relax import cleanupFile "alphafold/relax/cleanup.py", line 23, in <module>from openmm import app
ModuleNotFoundError: No module named 'openmm'

pdbfixer Bug2:conda install -c conda-forge pdbfixer==1.8.1

Traceback (most recent call last):File "run_alphafold.py", line 41, in <module>from alphafold.relax import relaxFile "alphafold/relax/relax.py", line 18, in <module>from alphafold.relax import amber_minimizeFile "alphafold/relax/amber_minimize.py", line 25, in <module>from alphafold.relax import cleanupFile "alphafold/relax/cleanup.py", line 22, in <module>import pdbfixerFile "/root/miniconda3/envs/alphafold/lib/python3.8/site-packages/pdbfixer/__init__.py", line 2, in <module>from .pdbfixer import PDBFixerFile "/root/miniconda3/envs/alphafold/lib/python3.8/site-packages/pdbfixer/pdbfixer.py", line 38, in <module>from simtk.openmm.app.internal.pdbstructure import PdbStructure
ModuleNotFoundError: No module named 'simtk.openmm.app.internal'

参考:PSP - 替换 MSA 数据库 以及 OpenMM 和 mmCIF 异常

Bug2: Collecting package metadata (repodata.json): / Killed

参考:StackOverflow - Collecting package metadata (repodata.json): / Killed

显存 RAM 过低,提升显存 0.5GB 至 8GB + 即可。

2. 配置数据库

参考:官方GitHub:GitHub - deepmind/alphafold

2.1 AlphaFold2 Model

目前,最新版本 (2023.5.7) 是 alphafold_params_2022-12-06

下载命令:

mkdir params
cd params/
wget -P . https://storage.googleapis.com/alphafold/alphafold_params_2022-12-06.tar   # 5.2G
tar --extract --verbose --file="alphafold_params_2022-12-06.tar" --directory="." --preserve-permissions

模型参数说明:

MP

2.2 Small BFD

下载命令:

mkdir small_bfd
cd small_bfd/
wget -P . https://storage.googleapis.com/alphafold-databases/reduced_dbs/bfd-first_non_consensus_sequences.fasta.gz  # 9.6G
gunzip "bfd-first_non_consensus_sequences.fasta.gz"

2.3 数据库配置

其他数据库,根据工程自行下载。将已有的数据库,配置到一个数据文件夹中,可以使用软连接的方式,即 ln -s,数据库如下:

bfd/					# 多个文件的相同前缀
mgnify/				# fa文件,64G
params/   		# 模型参数,最新版本2022-12-06,monomer,monomer-ptm,multimer_v3
pdb70/				# 文件夹
pdb_mmcif/		# 文件夹
pdb_seqres/		# multimer使用txt,208M
small_bfd/		# bfd的fasta文件,17G
uniprot/			# fasta文件,98G,注意版本信息
uniref30/			# 多个文件的相同前缀,注意日期
uniref90/			# fasta文件,59G

3. 配置脚本

修改运行脚本:run_alphafold.sh

修改数据库配置,注意 uniref30 的不同版本信息,配置如下:

# Path and user config (change me if required)
uniref90_database_path="$data_dir/uniref90/uniref90.fasta"
uniprot_database_path="$data_dir/uniprot/uniprot.fasta"
mgnify_database_path="$data_dir/mgnify/mgy_clusters_2022_05.fa"
bfd_database_path="$data_dir/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt"
small_bfd_database_path="$data_dir/small_bfd/bfd-first_non_consensus_sequences.fasta"
# uniref30_database_path="$data_dir/uniref30/UniRef30_2021_03"
uniref30_database_path="$data_dir/uniref30/uniclust30_2018_08"
pdb70_database_path="$data_dir/pdb70/pdb70"
pdb_seqres_database_path="$data_dir/pdb_seqres/pdb_seqres.txt"
template_mmcif_dir="$data_dir/pdb_mmcif/mmcif_files"
obsolete_pdbs_path="$data_dir/pdb_mmcif/obsolete.dat"

修改 MSA 搜索工具位置,配置如下:

hhblits_binary_path="/root/miniconda3/envs/alphafold/bin/hhblits"
hhsearch_binary_path="/root/miniconda3/envs/alphafold/bin/hhsearch"
jackhmmer_binary_path="/root/miniconda3/envs/alphafold/bin/jackhmmer"
kalign_binary_path="/root/miniconda3/envs/alphafold/bin/kalign"

修改 数据库位置 与 最大模版日期,配置如下:

if [[ "$data_dir" == "" || "$output_dir" == "" || "$fasta_path" == "" || "$max_template_date" == "" ]] ; thendata_dir=[my data dir];max_template_date="2022-04-01";
fi

搜索 MSA 的过程,在 AF2 推理运行中,占用时间较长,修改优先使用已有 MSA 文件,如下:

if [[ "$use_precomputed_msas" == "" ]] ; thenuse_precomputed_msas="true"
fi

4. 配置源码

加速搜索 MSA 的过程,需要修改 CPU 数量,默认是8个。查询 Linux 的 GPU 数量,如下:

lscpu | grep 'CPU(s):' | head -1 | awk '{print $2}'   # 查询 CPU 数量

修改文件 alphafold/data/tools/hhblits.py,如下:

                binary_path: str,databases: Sequence[str],
-               n_cpu: int = 4,
+               n_cpu: int = [your num],n_iter: int = 3,e_value: float = 0.001,maxseq: int = 1_000_000,

修改文件 alphafold/data/tools/hmmsearch.py,如下:

       cmd = [self.binary_path,'--noali',  # Don't include the alignment in stdout.
-          '--cpu', '8'
+          '--cpu', '[your num]']# If adding flags, we have to do so before the output and input:if self.flags:

修改文件 alphafold/data/tools/jackhmmer.py,如下:

                binary_path: str,database_path: str,
-               n_cpu: int = 8,
+               n_cpu: int = [your num],n_iter: int = 1,e_value: float = 0.0001,z_value: Optional[int] = None,

也可以修改 monomer_casp14 模式的默认模型,由 monomer 替换为 monomer_ptm,如下:

-MODEL_PRESETS['monomer_casp14'] = MODEL_PRESETS['monomer']
+# MODEL_PRESETS['monomer_casp14'] = MODEL_PRESETS['monomer']
+MODEL_PRESETS['monomer_casp14'] = MODEL_PRESETS['monomer_ptm']

其中,pTM 模型:

pTM models were fine-tuned to produce pTM (predicted TM-score) and (PAE) predicted aligned error values alongside their structure predictions.

pTM 模型经过微调 (基于monomer),在进行结构预测时,产生 pTM(预测的TM得分)和 PAE(预测的对齐误差)值。

5. 推理序列

推理命令:

bash run_alphafold.sh -o mydata/output/ -f mydata/query.fasta -m monomer_casp14 -c full_dbs

seq:

>dummy_sequence
GWSTELEKHREELKEFLKKEGITNVEIRIDNGRLEVRVEGGTERLKRFLEELRQKLEKKGYTVDIKIE

主要输出:

  1. pdb,最好的结构是 ranked_0.pdb
  2. ranking_debug.json,pdb排名
  3. msas,搜索出的 MSA 文件,即mgnify_hits.stopdb_hits.hhrbfd_uniref_hits.a3muniref90_hits.sto 等。
  4. timings.json,运行耗时。

其中 ranking_debug.json,如下:

{"plddts": {"model_1_pred_0": 86.26850453604357,"model_2_pred_0": 85.06505646965638,"model_3_pred_0": 87.40822765097714,"model_4_pred_0": 84.71053426936133,"model_5_pred_0": 82.69870802756033},"order": ["model_3_pred_0","model_1_pred_0","model_2_pred_0","model_4_pred_0","model_5_pred_0"]
}

其中timings.json,如下:

{"features": 103.40737819671631,"process_features_model_1_pred_0": 3.8775177001953125,"predict_and_compile_model_1_pred_0": 116.74437546730042,"relax_model_1_pred_0": 11.63992977142334,"process_features_model_2_pred_0": 1.3910491466522217,"predict_and_compile_model_2_pred_0": 114.51620531082153,"relax_model_2_pred_0": 5.43536114692688,"process_features_model_3_pred_0": 1.1890630722045898,"predict_and_compile_model_3_pred_0": 87.88086938858032,"relax_model_3_pred_0": 5.768261194229126,"process_features_model_4_pred_0": 1.1486437320709229,"predict_and_compile_model_4_pred_0": 87.95040488243103,"relax_model_4_pred_0": 5.295060873031616,"process_features_model_5_pred_0": 1.2103533744812012,"predict_and_compile_model_5_pred_0": 88.90721249580383,"relax_model_5_pred_0": 5.518966436386108
}

输出的最优PDB结构,如下:

PDB

参考

  1. GitHub - deepmind/alphafold
  2. GitHub - kalininalab/alphafold_non_docker

源码如下:

#!/bin/bashusage() {echo ""echo "Please make sure all required parameters are given"echo "Usage: $0 <OPTIONS>"echo "Required Parameters:"echo "-d <data_dir>         Path to directory of supporting data"echo "-o <output_dir>       Path to a directory that will store the results."echo "-f <fasta_paths>      Path to FASTA files containing sequences. If a FASTA file contains multiple sequences, then it will be folded as a multimer. To fold more sequences one after another, write the files separated by a comma"echo "-t <max_template_date> Maximum template release date to consider (ISO-8601 format - i.e. YYYY-MM-DD). Important if folding historical test sets"echo "Optional Parameters:"echo "-g <use_gpu>          Enable NVIDIA runtime to run with GPUs (default: true)"echo "-r <run_relax>        Whether to run the final relaxation step on the predicted models. Turning relax off might result in predictions with distracting stereochemical violations but might help in case you are having issues with the relaxation stage (default: true)"echo "-e <enable_gpu_relax> Run relax on GPU if GPU is enabled (default: true)"echo "-n <openmm_threads>   OpenMM threads (default: all available cores)"echo "-a <gpu_devices>      Comma separated list of devices to pass to 'CUDA_VISIBLE_DEVICES' (default: 0)"echo "-m <model_preset>     Choose preset model configuration - the monomer model, the monomer model with extra ensembling, monomer model with pTM head, or multimer model (default: 'monomer')"echo "-c <db_preset>        Choose preset MSA database configuration - smaller genetic database config (reduced_dbs) or full genetic database config (full_dbs) (default: 'full_dbs')"echo "-p <use_precomputed_msas> Whether to read MSAs that have been written to disk. WARNING: This will not check if the sequence, database or configuration have changed (default: 'false')"echo "-l <num_multimer_predictions_per_model> How many predictions (each with a different random seed) will be generated per model. E.g. if this is 2 and there are 5 models then there will be 10 predictions per input. Note: this FLAG only applies if model_preset=multimer (default: 5)"echo "-b <benchmark>        Run multiple JAX model evaluations to obtain a timing that excludes the compilation time, which should be more indicative of the time required for inferencing many proteins (default: 'false')"echo ""exit 1
}while getopts ":d:o:f:t:g:r:e:n:a:m:c:p:l:b:" i; docase "${i}" ind)data_dir=$OPTARG;;o)output_dir=$OPTARG;;f)fasta_path=$OPTARG;;t)max_template_date=$OPTARG;;g)use_gpu=$OPTARG;;r)run_relax=$OPTARG;;e)enable_gpu_relax=$OPTARG;;n)openmm_threads=$OPTARG;;a)gpu_devices=$OPTARG;;m)model_preset=$OPTARG;;c)db_preset=$OPTARG;;p)use_precomputed_msas=$OPTARG;;l)num_multimer_predictions_per_model=$OPTARG;;b)benchmark=$OPTARG;;esac
done# Parse input and set defaults
if [[ "$data_dir" == "" || "$output_dir" == "" || "$fasta_path" == "" || "$max_template_date" == "" ]] ; thenusage
fiif [[ "$benchmark" == "" ]] ; thenbenchmark=false
fiif [[ "$use_gpu" == "" ]] ; thenuse_gpu=true
fiif [[ "$gpu_devices" == "" ]] ; thengpu_devices=0
fiif [[ "$run_relax" == "" ]] ; thenrun_relax="true"
fiif [[ "$enable_gpu_relax" == "" ]] ; thenenable_gpu_relax="true"
fiif [[ "$enable_gpu_relax" == true && "$use_gpu" == true ]] ; thenuse_gpu_relax="true"
elseuse_gpu_relax="false"
fiif [[ "$num_multimer_predictions_per_model" == "" ]] ; thennum_multimer_predictions_per_model=5
fiif [[ "$model_preset" == "" ]] ; thenmodel_preset="monomer"
fiif [[ "$model_preset" != "monomer" && "$model_preset" != "monomer_casp14" && "$model_preset" != "monomer_ptm" && "$model_preset" != "multimer" ]] ; thenecho "Unknown model preset! Using default ('monomer')"model_preset="monomer"
fiif [[ "$db_preset" == "" ]] ; thendb_preset="full_dbs"
fiif [[ "$db_preset" != "full_dbs" && "$db_preset" != "reduced_dbs" ]] ; thenecho "Unknown database preset! Using default ('full_dbs')"db_preset="full_dbs"
fiif [[ "$use_precomputed_msas" == "" ]] ; thenuse_precomputed_msas="false"
fi# This bash script looks for the run_alphafold.py script in its current working directory, if it does not exist then exits
current_working_dir=$(pwd)
alphafold_script="$current_working_dir/run_alphafold.py"if [ ! -f "$alphafold_script" ]; thenecho "Alphafold python script $alphafold_script does not exist."exit 1
fi# Export ENVIRONMENT variables and set CUDA devices for use
# CUDA GPU control
export CUDA_VISIBLE_DEVICES=-1
if [[ "$use_gpu" == true ]] ; thenexport CUDA_VISIBLE_DEVICES=0if [[ "$gpu_devices" ]] ; thenexport CUDA_VISIBLE_DEVICES=$gpu_devicesfi
fi# OpenMM threads control
if [[ "$openmm_threads" ]] ; thenexport OPENMM_CPU_THREADS=$openmm_threads
fi# TensorFlow control
export TF_FORCE_UNIFIED_MEMORY='1'# JAX control
export XLA_PYTHON_CLIENT_MEM_FRACTION='4.0'# Path and user config (change me if required)
uniref90_database_path="$data_dir/uniref90/uniref90.fasta"
uniprot_database_path="$data_dir/uniprot/uniprot.fasta"
mgnify_database_path="$data_dir/mgnify/mgy_clusters_2022_05.fa"
bfd_database_path="$data_dir/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt"
small_bfd_database_path="$data_dir/small_bfd/bfd-first_non_consensus_sequences.fasta"
uniref30_database_path="$data_dir/uniref30/UniRef30_2021_03"
pdb70_database_path="$data_dir/pdb70/pdb70"
pdb_seqres_database_path="$data_dir/pdb_seqres/pdb_seqres.txt"
template_mmcif_dir="$data_dir/pdb_mmcif/mmcif_files"
obsolete_pdbs_path="$data_dir/pdb_mmcif/obsolete.dat"# Binary path (change me if required)
hhblits_binary_path=$(which hhblits)
hhsearch_binary_path=$(which hhsearch)
jackhmmer_binary_path=$(which jackhmmer)
kalign_binary_path=$(which kalign)command_args="--fasta_paths=$fasta_path --output_dir=$output_dir --max_template_date=$max_template_date --db_preset=$db_preset --model_preset=$model_preset --benchmark=$benchmark --use_precomputed_msas=$use_precomputed_msas --num_multimer_predictions_per_model=$num_multimer_predictions_per_model --run_relax=$run_relax --use_gpu_relax=$use_gpu_relax --logtostderr"database_paths="--uniref90_database_path=$uniref90_database_path --mgnify_database_path=$mgnify_database_path --data_dir=$data_dir --template_mmcif_dir=$template_mmcif_dir --obsolete_pdbs_path=$obsolete_pdbs_path"binary_paths="--hhblits_binary_path=$hhblits_binary_path --hhsearch_binary_path=$hhsearch_binary_path --jackhmmer_binary_path=$jackhmmer_binary_path --kalign_binary_path=$kalign_binary_path"if [[ $model_preset == "multimer" ]]; thendatabase_paths="$database_paths --uniprot_database_path=$uniprot_database_path --pdb_seqres_database_path=$pdb_seqres_database_path"
elsedatabase_paths="$database_paths --pdb70_database_path=$pdb70_database_path"
fiif [[ "$db_preset" == "reduced_dbs" ]]; thendatabase_paths="$database_paths --small_bfd_database_path=$small_bfd_database_path"
elsedatabase_paths="$database_paths --uniref30_database_path=$uniref30_database_path --bfd_database_path=$bfd_database_path"
fi# Run AlphaFold with required parameters
$(python $alphafold_script $binary_paths $database_paths $command_args)

这篇关于PSP - 配置 AlphaFold2 的高效 Tensorflow 运行环境的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/852633

相关文章

IDEA中配置Tomcat全过程

《IDEA中配置Tomcat全过程》文章介绍了在IDEA中配置Tomcat的六步流程,包括添加服务器、配置部署选项、设置应用服务器及启动,并提及Maven依赖可能因约定大于配置导致问题,需检查依赖版本... 目录第一步第二步第三步第四步第五步第六步总结第一步选择这个方框第二步选择+号,找到Tomca

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1