音频干扰检测(时域方法)

2024-03-27 13:12

本文主要是介绍音频干扰检测(时域方法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请注意注释掉的代码:逐个包络比对就不能加窗了。

import librosa

import numpy as np

from scipy.signal import windows

import matplotlib.pyplot as plt

# 读取音频文件

audio_file = 'sine.wav'

signal, sample_rate = librosa.load(audio_file, sr=None, mono=False)

# 检查通道数并处理信号

if signal.ndim > 1:

    num_channels = signal.shape[0]

    print(f"音频文件有 {num_channels} 个通道")

    # 如果是4通道,取第X个通道进行处理,这里示例取第4个通道(索引为3)

    if num_channels == 2:

        signal = signal[0, :]

else:

    # 如果信号是单通道,直接使用

    print("音频文件是单通道")

# 计算每个周期的采样点数

cycle_samples = int(sample_rate / 1000)

# # 创建汉宁窗

# window_length = cycle_samples * 1  # 窗长度为10个周期

# window = windows.hann(window_length)

# # 对信号的开头和结尾分别应用汉宁窗

# windowed_signal = signal.copy()

# windowed_signal[:window_length//2] *= window[:window_length//2]

# windowed_signal[-window_length//2:] *= window[window_length//2:]

# 计算周期数

num_cycles = len(signal) // cycle_samples

# 存储异常周期的时间点和幅值

anomaly_times = []

anomaly_amplitudes = []

# 逐个周期比较包络

for i in range(num_cycles - 1):

    start = i * cycle_samples

    end = (i + 1) * cycle_samples

    current_cycle = signal[start:end]

    next_cycle = signal[end:end+cycle_samples]

   

    # 计算当前周期和下一个周期的包络差异

    diff = np.abs(current_cycle - next_cycle)

   

    # 如果差异大于阈值,则认为是异常周期

    if np.max(diff) > 0.1:

        anomaly_time = start / sample_rate

        anomaly_times.append(anomaly_time)

        anomaly_amplitudes.append(np.max(np.abs(current_cycle)))

# 打印异常周期的时间点和幅值

for time, amplitude in zip(anomaly_times, anomaly_amplitudes):

    print(f"异常周期时间点: {time:.3f}s, 幅值: {amplitude:.3f}")

# 绘制时域波形图

time = np.arange(len(signal)) / sample_rate

plt.figure(figsize=(8,4))

plt.plot(time, signal, label='Signal')

# 标注异常周期

for t in anomaly_times:

    plt.axvline(x=t, color='r', linestyle='--', label='Anomaly Detected')

plt.xlabel('Time(s)')

plt.ylabel('Amplitude')

plt.title('Windowed Waveform with Anomalies Highlighted')

plt.legend()

plt.show()

这篇关于音频干扰检测(时域方法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/852204

相关文章

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A

Nginx安全防护的多种方法

《Nginx安全防护的多种方法》在生产环境中,需要隐藏Nginx的版本号,以避免泄漏Nginx的版本,使攻击者不能针对特定版本进行攻击,下面就来介绍一下Nginx安全防护的方法,感兴趣的可以了解一下... 目录核心安全配置1.编译安装 Nginx2.隐藏版本号3.限制危险请求方法4.请求限制(CC攻击防御)