VGG16神经网络搭建

2024-03-27 07:04
文章标签 搭建 神经网络 vgg16

本文主要是介绍VGG16神经网络搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、定义提取特征网络结构

将要实现的神经网络参数存放在列表中,方便使用。

数字代表卷积核的个数,字符代表池化层的结构

cfgs = {"vgg11": [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}

二、 定义提取特征网络

如果遍历过程中 v== 'M',就是定义池化层,后面的卷积核与stride步距都是网络的默认参数。

数字代表的就是定义卷积层,然后与激活函数链接在一起。

最后返回时,以非关键字参数的形式传入。

def make_features(cfg: list):layers = []in_channels = 3for v in cfg:if v == 'M':layers += [nn.MaxPool2d(kernel_size=2, stride=2)]else:conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)layers += [conv2d, nn.ReLU(True)]in_channels = vreturn nn.Sequential(*layers)

三、初始化网络

传入参数features,class_num,是否需要初始化权重。

定义分类网络结构,dropout方法缓解过拟合问题,再全连接核relu激活函数链接起来。

如果需要初始化权重,那么就会进入初始化权重的函数中。

class VGG(nn.Module):def __init__(self, features, class_num=1000, init_weight=False):super(VGG, self).__init__()self.features = featuresself.classifier = nn.Sequential(nn.Dropout(p=0.5),nn.Linear(512*7*7, 2048),nn.ReLU(True),nn.Dropout(p=0.5),nn.Linear(2048, 2048),nn.ReLU(True),nn.Linear(2048, class_num))if init_weight:self._initialize_weights()

 四、初始化权重函数

这个函数会遍历网络的每一个子模块。

如果遍历的当前层是一个卷积层,那么这个方法会初始化卷积核的权重,如果采用了偏置,那就默认初始化为0.

如果遍历的当前层是全连接层,也是用这个方法去初始化全连接层的权重,并将偏置设置为0.

    def _initialize_weights(self):for m in self.modules():  # 遍历模块中的每一个子模块if isinstance(m, nn.Conv2d):nn.init.xavier_uniform_(m.weight)if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.xavier_uniform_(m.weight)nn.init.constant_(m.bias, 0)

五、定义正向传播

x:输入的图像数据

features:提取网络特征结构

flatten:展平处理。因为第0个维度是batch,所以我们从第一个维度开始展平

经过分类网络结构后返回

    def forword(self, x):x = self.features(x)x = torch.flatten(x, strat_dim=1)x = self.classifier(x)return x

六、实例化模型

传入参数model_name:实例化给定的配置模型。

将key值传入字典当中

通过VGG这个类来实例化这个网络

features通过make_features这个函数来实现

最后创建对象实现VGG神经网络的搭建。 

def vgg(model_name="vgg16", **kwargs):try:cfg = cfgs[model_name]except:print("waring: model number {} not in cfgs dict".format(model_name))model = VGG(make_features(cfg), **kwargs)return  modelvgg_model = vgg(model_name='vgg13')

 运行成功,网络搭建成功。

 全部代码

import torch.nn as nn
import torchclass VGG(nn.Module):def __init__(self, features, class_num=1000, init_weight=False):super(VGG, self).__init__()self.features = featuresself.classifier = nn.Sequential(nn.Dropout(p=0.5),nn.Linear(512*7*7, 2048),nn.ReLU(True),nn.Dropout(p=0.5),nn.Linear(2048, 2048),nn.ReLU(True),nn.Linear(2048, class_num))if init_weight:self._initialize_weights()def forword(self, x):x = self.features(x)x = torch.flatten(x, strat_dim=1)x = self.classifier(x)return xdef _initialize_weights(self):for m in self.modules():  # 遍历模块中的每一个子模块if isinstance(m, nn.Conv2d):nn.init.xavier_uniform_(m.weight)if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.xavier_uniform_(m.weight)nn.init.constant_(m.bias, 0)def make_features(cfg: list):layers = []in_channels = 3for v in cfg:if v == 'M':layers += [nn.MaxPool2d(kernel_size=2, stride=2)]else:conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)layers += [conv2d, nn.ReLU(True)]in_channels = vreturn nn.Sequential(*layers)cfgs = {"vgg11": [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}def vgg(model_name="vgg16", **kwargs):try:cfg = cfgs[model_name]except:print("waring: model number {} not in cfgs dict".format(model_name))model = VGG(make_features(cfg), **kwargs)return  modelvgg_model = vgg(model_name='vgg13')

 全部代码与分开模块的顺序不同,但不影响最终实现。

这篇关于VGG16神经网络搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851289

相关文章

vite搭建vue3项目的搭建步骤

《vite搭建vue3项目的搭建步骤》本文主要介绍了vite搭建vue3项目的搭建步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1.确保Nodejs环境2.使用vite-cli工具3.进入项目安装依赖1.确保Nodejs环境

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

idea+spring boot创建项目的搭建全过程

《idea+springboot创建项目的搭建全过程》SpringBoot是Spring社区发布的一个开源项目,旨在帮助开发者快速并且更简单的构建项目,:本文主要介绍idea+springb... 目录一.idea四种搭建方式1.Javaidea命名规范2JavaWebTomcat的安装一.明确tomcat

k8s搭建nfs共享存储实践

《k8s搭建nfs共享存储实践》本文介绍NFS服务端搭建与客户端配置,涵盖安装工具、目录设置及服务启动,随后讲解K8S中NFS动态存储部署,包括创建命名空间、ServiceAccount、RBAC权限... 目录1. NFS搭建1.1 部署NFS服务端1.1.1 下载nfs-utils和rpcbind1.1

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Linux搭建ftp服务器的步骤

《Linux搭建ftp服务器的步骤》本文给大家分享Linux搭建ftp服务器的步骤,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录ftp搭建1:下载vsftpd工具2:下载客户端工具3:进入配置文件目录vsftpd.conf配置文件4:

Java 与 LibreOffice 集成开发指南(环境搭建及代码示例)

《Java与LibreOffice集成开发指南(环境搭建及代码示例)》本文介绍Java与LibreOffice的集成方法,涵盖环境配置、API调用、文档转换、UNO桥接及REST接口等技术,提供... 目录1. 引言2. 环境搭建2.1 安装 LibreOffice2.2 配置 Java 开发环境2.3 配

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

如何使用Haporxy搭建Web群集

《如何使用Haporxy搭建Web群集》Haproxy是目前比较流行的一种群集调度工具,同类群集调度工具有很多如LVS和Nginx,本案例介绍使用Haproxy及Nginx搭建一套Web群集,感兴趣的... 目录一、案例分析1.案例概述2.案例前置知识点2.1 HTTP请求2.2 负载均衡常用调度算法 2.

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热