论文浅尝 | Meta Relational Learning: 基于元关系学习的少样本知识图谱推理

本文主要是介绍论文浅尝 | Meta Relational Learning: 基于元关系学习的少样本知识图谱推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文转载自公众号:浙大KG。                                                                       


笔记整理:陈名杨,浙江大学在读博士

发表会议:EMNLP-2019

论文链接:https://arxiv.org/abs/1909.01515

开源代码:https://github.com/AnselCmy/MetaR


640?wx_fmt=png本文主要解决知识图谱中少样本链接预测的问题,具体来说,就是在仅观测到某个关系的少量三元组后,预测该关系的其他三元组,也就是对该关系进行链接预测。针对该问题,我们提出了一个元关系学习框架MetaR(Meta Relational Learning)融合元学习和知识图谱嵌入的方法,通过转移关系特定元信息(relation-specific meta information)从而解决知识图谱少样本链接预测的问题。本篇工作已经被EMNLP-2019接收。


知识图谱(KG)中包含了大量形如(head, relation, tail)的三元组,尽管如此,知识图谱仍然存在不完整性的问题,因此需要进行知识图谱的补全,其中一个很重要的方法就是链接预测。 知识图谱嵌入(Knowledge Graph Embedding)是完成链接预测的一种有效方法,但其有效性依赖于足够的训练样本,因此在知识图谱中对于某一个关系的训练样本较少时,对于该关系的嵌入并不能得到充分的学习,所以完成链接预测的效果也会很差。 但是在真实的情况中,少样本的问题广泛存在于知识图谱中。 例如在Wikidata中,大约有10%的关系的三元组数量少于10个。 我们在这里把仅有少量三元组的关系称为少样本关系(few-shot relations),本篇文章主要关注少样本链接预测,也就是在仅知道K个关于关系r的三元组的情况下,给定头实体h和关系r,预测尾实体t,通常K非常小,例如1、3、5。

下表为知识图谱的单样本链接预测任务的训练和测试任务举例:
640?wx_fmt=png
单样本链接预测的问题可以解释成,根据支持集(support)中的关于该关系的一个样本,从而对查询集(query)中的关于该关系的缺失了尾实体的三元组进行链接预测。
下图描述了一个三样本链接预测(3-shot link prediction)。 也可以看出MetaR解决少样本链接预测的思路,其中最重要的思想在于使用在不同任务(across tasks)之间共享的relational learner,在一个具体的任务(within one task)中,从少量的关于某个关系的三元组中抽取出关系特定元信息,用于该关系的链接预测。 其中,关系特定元信息包含两个部分,关系元(relation meta)和梯度元(gradient meta),其中关系元是连接头实体和尾实体的关系的高阶表示,梯度元则为关系元的梯度。

640?wx_fmt=png

具体的模型分为两个部分,关系元学习器(Relation-Meta Learner)和嵌入学习器(Embedding Leaner)。关系元学习器是根据支持集的头实体和尾实体的向量表示得到两个实体间的关联,也就是关系元;嵌入学习器计算在支持集和查询集中,送入的头尾实体二元组和计算出的关系元的真值,类似于在做知识图谱嵌入时的得分函数,同时在支持集的阶段通过该真值而计算出的关系元的梯度作梯度元从而更新关系元。整个流程如下:
640?wx_fmt=png
其中R为关系元,G为梯度元。
在实验阶段我们使用了NELL-One和Wiki-One,这两个数据集是在发表于MENLP-2018的One-Shot Relational Learning for Knowledge Graphs中提出,其中该文章提出的GMatching方法中需要使用一个不包含训练/验证/测试任务的关系的背景知识图谱(Background KG),但是我们提出的方法并不依赖于类似的背景知识图谱,所以我们对数据集进行了多种的不同处理,具体解释如下:
640?wx_fmt=png
在不同的数据集设定下进行实验,和GMatching对比都是公平的,因为这并没有改变少样本的设定,也没有更改数据集的总量,仅仅是不同的背景知识图谱使用方法。

实验中我们验证了: MetaR在少样本链接预测的任务上是否优于之前的模型; 关系特定元信息在整个模型中的贡献; MetaR在做少样本链接预测时是否有什么要求。 首先我们先把我们的模型和GMatching在NELL-One和Wiki-One上进行对比,从下表中可以看出,我们的方法在NELL-One、Wiki-One上和1-shot、5-shot的结果都要好于GMatching。
640?wx_fmt=png
并且我们进行了模型简化测试(ablation study),分别去掉梯度元(-g),去掉关系元和梯度元(-g-r),以下是在NELL-One进行单样本链接预测的Hit@10的结果,去掉相关部分后实验结果都大幅降度,说明了关系特定元信息的重要性。
640?wx_fmt=png
最后我们发现在实验结果上,NELL-One在BG:In-Train的数据集设定下实验结果更好, Wiki-One在BG:Pre-Train设定下的结果更好,我们对两个数据集进行分析后,认为是数据集的实体稀疏性和训练任务的数量会对实验结果产生影响。

本文对我们的工作仅进行了简要的分析,对本文感兴趣的读者请阅读论文了解更多细节。


OpenKG

开放知识图谱(简称 OpenKG)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

点击阅读原文,进入 OpenKG 博客。

这篇关于论文浅尝 | Meta Relational Learning: 基于元关系学习的少样本知识图谱推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851135

相关文章

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

Tomcat版本与Java版本的关系及说明

《Tomcat版本与Java版本的关系及说明》:本文主要介绍Tomcat版本与Java版本的关系及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Tomcat版本与Java版本的关系Tomcat历史版本对应的Java版本Tomcat支持哪些版本的pythonJ

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

MYSQL关联关系查询方式

《MYSQL关联关系查询方式》文章详细介绍了MySQL中如何使用内连接和左外连接进行表的关联查询,并展示了如何选择列和使用别名,文章还提供了一些关于查询优化的建议,并鼓励读者参考和支持脚本之家... 目录mysql关联关系查询关联关系查询这个查询做了以下几件事MySQL自关联查询总结MYSQL关联关系查询