计算机组成原理(超详解!!) 第三节 运算器(浮点加减乘)

2024-03-27 03:52

本文主要是介绍计算机组成原理(超详解!!) 第三节 运算器(浮点加减乘),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.浮点加法、减法运算

操作过程

1.操作数检查      

如果能够判断有一个操作数为0,则没必要再进行后续一系列操作,以节省运算时间。

2.完成浮点加减运算的操作

(1) 比较阶码大小并完成对阶

使二数阶码相同(即小数点位置对齐),这个过程叫作对阶。  

先求两数阶码 Ex 和 Ey之差,即△E = Ex-Ey  

若△E = 0,表示  Ex=Ey  

若△E > 0, 表示 Ex>Ey  

若△E < 0, 表示 Ex<Ey

通过尾数的移动来改变Ex或Ey,使其相等

对阶原则 : 阶码小的数向阶码大的数对齐, 小阶的尾数右移△E 位

(2) 尾数进行加或减运算

尾数求和方法与定点加减法运算完全一样。  

对阶完毕可得: [x]补=00 11, 00.0011                

                       [y]补=00 11, 11.0110    

对尾数求和:

即得: [x+y]补=00 11, 11.1001

(3) 结果规格化

求和之后得到的数可能不是规格化了的数, 为了增加有效数字的位数, 提高运算精度,必须将求和的结果规格化.  

①规格化的定义:              

          

采用原码:                  正数:    S=0.1 ×××…×              负数: S=1.1 ×××…×

采用双符号位的补码:正数:   S=00.1×××…×              负数:   S=11.0×××…×

原码  :不论正数、负数,第一数位为1

补码  :符号位和第 1 数位不同

特例:

②向左规格化

若不是规格化的数,需要尾数向左移位,以实现规格化的过程,我们称其为向左规格化。

前例中, 00 11, 11.1001不是规格化数,因而需要左规,即左移一位,阶码减1

得:  [x+y]补=00 10, 11.0010

③向右规格化

浮点加减运算时,尾数求和的结果也可能得到:01.×××…× 或  10.×××…×, 即两符号位不等,即结果的绝对值大于1。

此时,将尾数运算的结果右移一位,阶码加1,称为向右规格化。

(4) 舍入处理

在对阶或向右规格化时,  尾数要向右移位,  这样, 被右移的尾数的低位部分会被丢掉,  从而造成一定误差,因此要进行舍入处理。  

简单的舍入方法有两种:  

① “0舍1入”法:如果右移时被丢掉数位的最高位为0则舍去,反之则将尾数的末位加“1”。  

② “恒置1”法:只要数位被移掉,就在尾数的末位恒置“1”。

IEEE754标准,提供的四种舍入处理方法:

就近舍入:即“四舍五入”。

朝0舍入:即朝数轴原点方向舍入

朝+ ∞舍入:正数向最低有效位进1,负数截尾

朝- ∞舍入:正数简单截尾,负数向最低有效位进1

(5)溢出处理

与定点加减法一样,浮点加减运算最后一步也需判溢出。在浮点规格化中已指出,当尾数之和(差)出现01.××…×或10.××…×时,并不表示溢出,只有将此数右规后,再根据阶码来判断浮点运算结果是否溢出。

一般说浮点溢出,均是指上溢。

浮点机的是否溢出可由阶码的符号决定:    

阶码[j]补=01, ×××…× 为上溢,机器停止运算,做中断处理;    

阶码[j]补=10, ×××…× 为下溢,按机器零处理。

与定点数的加减溢出的双符号位判断原则一样          

fs1fs2 =  00         结果为正数,无溢出                      

fs1fs2 =   01         结果正溢                      

fs1fs2 =   10         结果负溢                      

fs1fs2 =   11         结果为负数,无溢出

小结

1.浮点数的溢出是以其阶码溢出表现出来的

在加、减运算过程中要检查是否产生了溢出:若阶码正常,加减运算正常结束;若阶码溢出,则要进行相应的处理。

阶码上溢—— 超过了阶码可能表示的最大值的正指数值,一般将其认为是+∞和-∞。

阶码下溢—— 超过了阶码可能表示的最小值的负指数值,一般将其认为是0。

2.对尾数的溢出也需要处理

尾数上溢:两个同符号尾数相加产生了最高位向上的进位,进行“右规”    

尾数下溢:在尾数右移时,最低有效位从右端流出,要进行舍入处理

3.加减法运算器原理图

4.部件说明

a、b、c为三个浮点数据寄存器,其中a、b中存放待运算的2个浮点操作数,c中存放运算结果操作数;

d、e为2个ALU,d为大ALU,用来进行尾数运算,e为小ALU,用来进行阶码运算;

f、g、h为三个2选一的选择器;

k为尾数右移部件,用于对阶时操作;

l为左移/右移部件,用于对大ALU运算结果的规格化;

i为阶码差寄存器; j为阶码加1/减1器件,用于对阶后操作及舍入操作;

n为舍入部件,用于舍入操作;

p为操作控制器,根据阶码差控制相关部件的操作;

5.工作过程简介

(1) 对阶

a,b中的两个阶码送e(小ALU)进行对阶操作,结果存入i(阶码差寄存器),然后送p(操作控制器),根据阶码差对尾数进行移位操作。

操作控制器输出x、y、z、u、v、w,6个控制信号。信号y控制选择器g将阶码较小数的尾数送k(右移部件)。同时,对较小的阶码进行加1操作(由操作控制信号x控制),对阶后的阶码作为结果操作数的阶码。

(2) 尾数运算

经过对阶后的2个尾数送入d(大ALU)进行加减运算,运算结果送入l(左移/右移部件)进行规格化。

(3) 运算结果规格化    

规格化时对运算结果的尾数进行左移或右移由操作控制器p的控制信号u控制,同时结果的阶码进行加1或减1操作,由j(加1/减1部件)实现,尾数右移,阶码加1,尾数左移,阶码减1。

(4) 舍入处理

规格化后数据送n舍入部件,经过舍入操作的数据结果送入c(结果数据寄存器)。

6.练习

2.浮点运算流水线

1、提高并行性的两个渠道

空间并行性:增加冗余部件,如增加多操作部件处理机和超标量处理机

时间并行性:改善操作流程如:流水线技术

2、流水技术原理  

仿照工厂中流水装配线原理,对计算机中复杂任务进行流水线处理。首先把任务分割为一系列子任务,使各子任务能在流水线的各个阶段并发地执行,这是实现计算机时间并行性的一种方法。    

假设作业T被分成k个子任务,可表达为T={T1,T2,…,Tk}  

各个子任务之间具有一定的优先关系,如i<j,则处理完Ti后,才能处理Tj,这种具有线性优先关系的流水线称为线性流水线。

在流水线中必须是连续的任务,只有不断的提供任务才能充分发挥流水线的效率

把一个任务分解为几个有联系的子任务。每个子任务由一个专门的功能部件实现

在流水线中的每个功能部件之后都要有一个缓冲寄存器,或称为锁存器

流水线中各段的时间应该尽量相等,否则将会引起“堵塞”和“断流”的现象

流水线需要有装入时间和排空时间,只有当流水线完全充满时,才能充分发挥效率

3.流水线浮点运算器

4. 流水线浮点加法器

这篇关于计算机组成原理(超详解!!) 第三节 运算器(浮点加减乘)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850849

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原