聚类分析|基于层次的聚类方法及其Python实现

2024-03-26 23:52

本文主要是介绍聚类分析|基于层次的聚类方法及其Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

聚类分析|基于层次的聚类方法及其Python实现

    • 0. 基于层次的聚类方法
    • 1. 簇间距离度量方法
      • 1.1 最小距离
      • 1.2 最大距离
      • 1.3 平均距离
      • 1.4 中心法
      • 1.5 离差平方和
    • 2. 基于层次的聚类算法
      • 2.1 凝聚(Agglomerative)
      • 2.3 分裂(Divisive)
    • 3. 基于层次聚类算法的Python实现

0. 基于层次的聚类方法

层次聚类(Hierarchical Clustering)类似于一个树状结构,对数据集采用某种方法逐层地进行分解或者汇聚,直到分出的最后一层的所有类别数据满足要求为止。
当数据集不知道应该分为多少类时,使用层次聚类比较适合。
无论是凝聚方法还是分裂方法,一个核心问题是度量两个簇之间的距离,其中每个簇是一个数据样本集合。

划分方法(Partitioning Method)是基于距离判断样本相似度,通过不断迭代将含有多个样本的数据集划分成若干个簇,使每个样本都属于且只属于一个簇,同时聚类簇的总数小于样本总数目。如k-means和k-medoids。 该方法需要事先给定聚类数以及初始聚类中心,通过迭代的方式使得样本与各自所属类别的簇中心的距离平方和最小,聚类效果很大程度取决于初始簇中心的选择。

1. 簇间距离度量方法

1.1 最小距离

簇C1和C2的距离取决于两个簇中距离最近的数据样本。
d i s t m i n ( C 1 , C 2 ) = m i n P i ∈ C 1 , P j ∈ C c d i s t ( P i , P j ) dist_{min}(C_1,C_2)=\mathop{min}\limits_{P_i \in C_1,P_j \in C_c}dist(P_i,P_j) distmin(C1,C2)=PiC1,PjCcmindist(Pi,Pj)

只要两个簇类的间隔不是很小,最小距离算法可以很好的分离非椭圆形状的样本分布,但该算法不能很好的分离簇类间含有噪声的数据集。

1.2 最大距离

簇C1和C2的距离取决于两个簇中距离最远的数据样本。
d i s t m a x ( C 1 , C 2 ) = m a x P i ∈ C 1 , P j ∈ C c d i s t ( P i , P j ) dist_{max}(C_1,C_2)=\mathop{max}\limits_{P_i \in C_1,P_j \in C_c}dist(P_i,P_j) distmax(C1,C2)=PiC1,PjCcmaxdist(Pi,Pj)
最大距离算法可以很好的分离簇类间含有噪声的数据集,但该算法对球形数据的分离产生偏差。

1.3 平均距离

簇C1和C2的距离等于两个簇类中所有样本对的平均距离。
d i s t a v e r a g e ( C 1 , C 2 ) = 1 ∣ C 1 ∣ . ∣ C 2 ∣ ∑ P i ∈ C 1 , P j ∈ C c d i s t ( P i , P j ) dist_{average}(C_1,C_2)=\frac{1}{|C_1|.|C_2|}\sum\limits_{P_i \in C_1,P_j \in C_c}dist(P_i,P_j) distaverage(C1,C2)=C1∣.∣C21PiC1,PjCcdist(Pi,Pj)

1.4 中心法

簇C1和C2的距离等于两个簇中心点的距离。
d i s t m e a n ( C 1 , C 2 ) = d i s t ( M i , M j ) dist_{mean}(C_1,C_2)=dist(M_i,M_j) distmean(C1,C2)=dist(Mi,Mj)
其中M1和M2分别为簇C1和C2的中心点。

1.5 离差平方和

簇类C1和C2的距离等于两个簇类所有样本对距离平方和的平均。
d i s t ( C 1 , C 2 ) = 1 ∣ C 1 ∣ . ∣ C 2 ∣ ∑ P i ∈ C 1 , P j ∈ C c ( d i s t ( P i , P j ) ) 2 dist(C_1,C_2)=\frac{1}{|C_1|.|C_2|}\sum\limits_{P_i \in C_1,P_j \in C_c}(dist(P_i,P_j))^2 dist(C1,C2)=C1∣.∣C21PiC1,PjCc(dist(Pi,Pj))2

2. 基于层次的聚类算法

按照分解或者汇聚的原理不同,层次聚类可以分为两种方法:

2.1 凝聚(Agglomerative)

凝聚的方法,也称为自底向上的方法,初始时每个数据样本都被看成是单独的一个簇,然后通过相近的数据样本或簇形成越来越大的簇,直到所有的数据样本都在一个簇中,或者达到某个终止条件为止。
层次凝聚的代表是AGNES(Agglomerative Nesting)算法。

AGNES算法最初将每个数据样本作为一个簇,然后这些簇根据某些准则被一步步地合并。
这是一种单链接方法,其每个簇可以被簇中所有数据样本代表,两个簇间的相似度由这两个不同簇的距离确定(相似度可以定义为距离的倒数)。
算法描述:
输入:数据样本集D,终止条件为簇数目k
输出:达到终止条件规定的k个簇

  1. 将每个数据样本当成一个初始簇;
  2. 根据两个簇中距离最近的数据样本找到距离最近的两个簇;
  3. 合并两个簇,生成新簇的集合;
  4. 循环step2到step4直到达到定义簇的数目。

2.3 分裂(Divisive)

分裂的方法,也称为自顶向下的方法,它与凝聚层次聚类恰好相反,初始时将所有的数据样本置于一个簇中,然后逐渐细分为更小的簇,直到最终每个数据样本都在单独的一个簇中,或者达到某个终止条件为止。
层次分裂的代表是DIANA(Divisive Analysis)算法。
DIANA算法采用一种自顶向下的策略,首先将所有数据样本置于一个簇中,然后逐渐细分为越来越小的簇,直到每个数据样本自成一簇,或者达到了某个终结条件。
在DIANA方法处理过程中,所有样本初始数据都放在一个簇中。根据一些原则(如簇中最临近数据样本的最大欧式距离),将该簇分裂。簇的分裂过程反复进行,直到最终每个新的簇只包含一个数据样本。
算法描述:
输入:数据样本集D,终止条件为簇数目k
输出:达到终止条件规定的k个簇

  1. 将所有数据样本整体当成一个初始簇;
  2. 在所有簇中挑出具有最大直径的簇;
  3. 找出所挑簇里与其它数据样本平均相异度最大的一个数据样本放入splinter group,剩余的放入old party中;
  4. 在old party里找出到splinter group中数据样本的最近距离不大于到old party 中数据样本的最近距离的数据样本,并将该数据样本加入splinter group;
  5. 循环step2到step4直到没有新的old party数据样本分配给splinter group;
  6. splinter group和old party为被选中的簇分裂成的两个簇,与其他簇一起组成新的簇集合。

3. 基于层次聚类算法的Python实现

AgglomerativeClustering()是scikit-learn提供的层次聚类算法模型,常用形式为:

AgglomerativeClustering(n_clusters=2,affinity='euclidean',memory=None, compute_full_tree='auto', linkage='ward')

参数说明:

  1. n_clusters:int,指定聚类簇的数量。
  2. affinity:一个字符串或者可调用对象,用于计算距离。可以为:’euclidean’、’mantattan’、’cosine’、’precomputed’,如果linkage=’ward’,则affinity必须为’euclidean’。
  3. memory:用于缓存输出的结果,默认为None(不缓存)。
  4. compute_full_tree:通常当训练到n_clusters后,训练过程就会停止。但是如果compute_full_tree=True,则会继续训练从而生成一颗完整的树。
  5. linkage:一个字符串,用于指定链接算法。若取值’ward’:单链接single-linkage,采用distmin;若取值’complete’:全链接complete-linkage算法,采用distmax;若取值’average’:均连接average-linkage算法,采用distaverage。
from sklearn import datasets
from sklearn.cluster import AgglomerativeClustering
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import pandas as pd
iris = datasets.load_iris()
irisdata = iris.data
clustering = AgglomerativeClustering(linkage='ward', n_clusters= 4)
res = clustering.fit(irisdata)
print ("各个簇的样本数目:")
print (pd.Series(clustering.labels_).value_counts())
print ("聚类结果:")
print (confusion_matrix(iris.target, clustering.labels_))
plt.figure()
d0 = irisdata[clustering.labels_ == 0]
plt.plot(d0[:, 0], d0[:, 1], 'r.')
d1 = irisdata[clustering.labels_ == 1]
plt.plot(d1[:, 0], d1[:, 1], 'go')
d2 = irisdata[clustering.labels_ == 2]
plt.plot(d2[:, 0], d2[:, 1], 'b*')
d3 = irisdata[clustering.labels_ == 3]
plt.plot(d3[:, 0], d3[:, 1], 'c.')
plt.xlabel("Sepal.Length")
plt.ylabel("Sepal.Width")
plt.title("AGNES Clustering")
plt.show()
各个簇的样本数目:
1    50
2    38
0    36
3    26
dtype: int64
聚类结果:
[[ 0 50  0  0][ 1  0 24 25][35  0 14  1][ 0  0  0  0]]

在这里插入图片描述

这篇关于聚类分析|基于层次的聚类方法及其Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850274

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命