【Flink实战】Flink hint更灵活、更细粒度的设置Flink sql行为与简化hive连接器参数设置

本文主要是介绍【Flink实战】Flink hint更灵活、更细粒度的设置Flink sql行为与简化hive连接器参数设置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一. create table hints
    • 1. 语法
    • 2. 示例
    • 3. 注意
  • 二. 实战:简化hive连接器参数设置
  • 三. select hints(ing)

SQL 提示(SQL Hints)是和 SQL 语句一起使用来改变执行计划的。本章介绍如何使用 SQL 提示来实现各种干预。

SQL 提示一般可以用于以下:

  • 增强 planner:没有完美的 planner, SQL 提示让用户更好地控制执行;
  • 增加元数据(或者统计信息):如"已扫描的表索引"和"一些混洗键(shuffle keys)的倾斜信息"的一些统计数据对于查询来说是动态的,用提示来配置它们会非常方便,因为我们从 planner
    获得的计划元数据通常不那么准确;
  • 算子(Operator)资源约束:在许多情况下,我们会为执行算子提供默认的资源配置,即最小并行度或托管内存(UDF 资源消耗)或特殊资源需求(GPU 或 SSD 磁盘)等,可以使用 SQL 提示非常灵活地为每个查询(非作业)配置资源

 

一. create table hints

动态表选项允许动态地指定或覆盖表选项,不同于用 SQL DDL 或 连接 API 定义的静态表选项,这些选项可以在每个查询的每个表范围内灵活地指定。

因此,它非常适合用于交互式终端中的特定查询,例如,在 SQL-CLI 中,你可以通过添加动态选项/*+ OPTIONS('csv.ignore-parse-errors'='true') */来指定忽略 CSV 源的解析错误。

 

1. 语法

为了不破坏 SQL 兼容性,我们使用 Oracle 风格的 SQL hints 语法:

table_path /*+ OPTIONS(key=val [, key=val]*) */key: string字符
val: string字符

 

2. 示例


CREATE TABLE kafka_table1 (id BIGINT, name STRING, age INT) WITH (...);
CREATE TABLE kafka_table2 (id BIGINT, name STRING, age INT) WITH (...);-- `覆盖`查询语句中源表的选项
select id, name from kafka_table1 /*+ OPTIONS('scan.startup.mode'='earliest-offset') */;-- 覆盖 join 中源表的选项
select * fromkafka_table1 /*+ OPTIONS('scan.startup.mode'='earliest-offset') */ t1joinkafka_table2 /*+ OPTIONS('scan.startup.mode'='earliest-offset') */ t2on t1.id = t2.id;-- 覆盖插入语句中结果表的选项
insert into kafka_table1 /*+ OPTIONS('sink.partitioner'='round-robin') */ select * from kafka_table2;

 

3. 注意

create table hints 传递的连接器中catalog的相关参数,即create table with下参数,具体到源代码是:context.getCatalogTable().getOptions()

 

如果传参无效且在日志中看到参数已经设置成功,那

可能将context.getConfiguration()中的参数传递到with参数下,比如:
hive连接器下:table.exec.hive.sink.statistic-auto-gather.enable 参数由DefaultDynamicTableContext的configuration来接收。此参数为flink sql的全局参数,此时可以通过set table.exec.hive.sink.statistic-auto-gather.enable=false 语法来设定参数。

 

二. 实战:简化hive连接器参数设置

对于hive连接器,Flink实现了通过catalog的方式来管理hive表,在使用hive表时需要使用hive相关语法,此时需要声明,hive dialect,如下:


CREATE CATALOG myhive WITH ('type' = 'hive','default-database' = 'aaa','hive-conf-dir' = '/usr/bin/hadoop/software/hive/conf'
);SET table.sql-dialect=hive;-- 因为需要使用hive连接器中的写特性,所以需要create table ,此时sql语法为hive语法
CREATE TABLE hive_table (user_id STRING,order_amount DOUBLE
) PARTITIONED BY (dt STRING, hr STRING) STORED AS parquet TBLPROPERTIES ('partition.time-extractor.timestamp-pattern'='$dt $hr:00:00','sink.partition-commit.trigger'='partition-time','sink.partition-commit.delay'='1 h','sink.partition-commit.policy.kind'='metastore,success-file'
);-- 对于某些框架例如chunjun,此处不能很好的适配:
--
SET table.sql-dialect=default;
CREATE TABLE kafka_table (user_id STRING,order_amount DOUBLE,log_ts TIMESTAMP(3),WATERMARK FOR log_ts AS log_ts - INTERVAL '5' SECOND -- 在 TIMESTAMP 列声明 watermark。
) WITH (...);-- streaming sql, insert into hive table
INSERT INTO TABLE myhive.aaa.hive_table 
SELECT user_id, order_amount, DATE_FORMAT(log_ts, 'yyyy-MM-dd'), DATE_FORMAT(log_ts, 'HH')
FROM kafka_table;

如下可以把写hive的一些行为通过sql hint方式,放到Flink sql语句中,如下整个Flink sql 会清爽很多。

CREATE CATALOG myhive WITH ('type' = 'hive','default-database' = 'database_name','hive-conf-dir' = '/usr/bin/hadoop/software/hive/conf'
);CREATE TABLE source_kafka (`pv` string,`uv` string,`p_day_id` string
) WITH ('connector' = 'kafka-x','topic' = 'hive_kafka','properties.bootstrap.servers' = 'xxx:9092','properties.group.id' = 'luna_g','scan.startup.mode' = 'earliest-offset','json.timestamp-format.standard' = 'SQL','json.ignore-parse-errors' = 'true','format' = 'json','scan.parallelism' = '1');insert into myhive.database_name.table_name /*+ OPTIONS('partition.time-extractor.timestamp-pattern'='$p_day_id:00:00','sink.partition-commit.policy.kind'='metastore,success-file','sink.partition-commit.success-file.name'='_SUCCESS_gao111') */select *  from source_kafka; 

 

三. select hints(ing)

查询提示(Query Hints)用于为优化器修改执行计划提供建议,该修改只能在当前查询提示所在的查询块中生效(Query block, 什么是查询块)。 目前,Flink 查询提示只支持联接提示(Join Hints)。

具体见:官网

https://nightlies.apache.org/flink/flink-docs-release-1.16/zh/docs/dev/table/sql/queries/hints/#%E6%9F%A5%E8%AF%A2%E6%8F%90%E7%A4%BA

 

这篇关于【Flink实战】Flink hint更灵活、更细粒度的设置Flink sql行为与简化hive连接器参数设置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850265

相关文章

PostgreSQL 默认隔离级别的设置

《PostgreSQL默认隔离级别的设置》PostgreSQL的默认事务隔离级别是读已提交,这是其事务处理系统的基础行为模式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一 默认隔离级别概述1.1 默认设置1.2 各版本一致性二 读已提交的特性2.1 行为特征2.2

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

mtu设置多少网速最快? 路由器MTU设置最佳网速的技巧

《mtu设置多少网速最快?路由器MTU设置最佳网速的技巧》mtu设置多少网速最快?想要通过设置路由器mtu获得最佳网速,该怎么设置呢?下面我们就来看看路由器MTU设置最佳网速的技巧... 答:1500 MTU值指的是在网络传输中数据包的最大值,合理的设置MTU 值可以让网络更快!mtu设置可以优化不同的网

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

MySQL 衍生表(Derived Tables)的使用

《MySQL衍生表(DerivedTables)的使用》本文主要介绍了MySQL衍生表(DerivedTables)的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录一、衍生表简介1.1 衍生表基本用法1.2 自定义列名1.3 衍生表的局限在SQL的查询语句select