建模杂谈系列240 增量TF-IDF2-实践

2024-03-26 16:52

本文主要是介绍建模杂谈系列240 增量TF-IDF2-实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明

梳理一下tf-idf的全过程,然后用于实际的需求中。

内容

1 概念

从数据的更新计算上,将TF-IDF分为两部分:一部分用于计算IDF的增量部分,属于全局的学习;另一部分则用于批量处理新的数据集,相当于是在predict。

可以把IDF视为一个预训练模型,纳入建模的数据管理系统中统一管理和维护。

流程上:

  • 1 准备一批训练数据,入到raw_data部分
  • 2 通过对raw_data的筛选,获得模型的训练数据集。在数据表中记下元数据,并生成pkl文件。
  • 3 使用模型进行训练,在数据表中记下元数据,并生成pkl文件。
  • 4 生产上不断进行预测和数据累积(这个可能条件不充分)
  • 5 在固定的测试集上进行打分(目前这个也不充分)

2 训练部分 IDF

由于IDF信息的累积是要遍历多个文档之后形成的,所以这部分是独立的。

from Basefuncs import *
import tqdm# 获取多个批次要训练的数据
folder_path = '/DataPath/converted_data2/'
pkl_file_list = list(list_file_names_without_extension(folder_path))
pkl_file_list = sorted(pkl_file_list)pkl_dict = {}
for some_pkl_file in tqdm.tqdm(pkl_file_list):pkl_dict[some_pkl_file] = from_pickle(some_pkl_file, folder_path)

准备好训练用的函数,主要用于清洗、分析和idf的统计

import jieba as jb
import re
# 删除掉匹配模式之间的
def del_pat6_pro(x, swd, ewd):wd_str = swd + '.*' + ewdreturn re.sub(wd_str, '' , x)
puncs = r'[_,.。,!??;::|、-]+'
def clean_alpha_punc(x):res = del_pat6_pro(x, '<http', '>')res = re.sub(r'\d+', ' ', res)  # 删除数字并替换为空格res = re.sub(puncs, ' ', res)   # 删除指定的标点符res_list = jb.lcut(res)res = [x for x in res_list if x !=' ' and len(x) > 1]return res
def clean_a_bit(x):res = del_pat6_pro(x, '<http', '>')res = re.sub(puncs,' ',res)return res
import pandas as pd
import numpy as np
from collections import Counter
from itertools import chaindef get_idf_dict(corpus = None):corpus_s = pd.Series(corpus)# TF calculationcorpus_s1 = corpus_s.apply(lambda x: dict(Counter(x)))doc_words = corpus_s.apply(len)# IDF calculationcorpus_s2 = corpus_s1.apply(lambda x: list(x.keys()))idf_dict = Counter(chain.from_iterable(corpus_s2))return idf_dict
import pandas as pd def increadd_dict(master_dict = None, slave_dict = None):s1 = pd.Series(master_dict)s2 = pd.Series(slave_dict)s3 = s1+s2add_key = dict(s3.dropna())master_dict.update(slave_dict)master_dict.update(add_key)mod_keys = list(s2.keys()) # 可以并行return master_dict, mod_keysdef idf_train(idf_model = None, data_list = None, pid_list = None):pid_set = idf_model['pid_set']idf_dict = idf_model['idf_dict']gap_set = set(pid_list) - set(pid_set)if len(gap_set):print('updating %s recs ' % len(gap_set))else:print('No UPDATING')filter_data_list = []for i, v in enumerate(pid_list):if v in gap_set:filter_data_list.append(data_list[i])new_idf_dict = get_idf_dict(filter_data_list)_idf_dict,mod_keys = increadd_dict(idf_dict, new_idf_dict)idf_model['idf_dict'] = _idf_dictidf_model['pid_set'] = pid_set | gap_setreturn idf_model

开始批次训练,idf_model有两部分pid_setidf_dict,这里假设是一个纯新的模型训练。

idf_model = {'pid_set': set([]), 'idf_dict' : {}}
for some_pkl_file in tqdm.tqdm(pkl_file_list):tem_df = pkl_dict[some_pkl_file] tem_df['MD5'] = tem_df['content_md5'].apply(lambda x: x.upper())tem_df['wd_list'] =  tem_df['clean_content'].apply(lambda x: clean_alpha_punc(str(x)))idf_model = idf_train(idf_model = idf_model, data_list = list(tem_df['wd_list']) , pid_list = list(tem_df['MD5']))

对40个批次,约40万篇新闻进行训练

0%|          | 0/40 [00:00<?, ?it/s]
updating 9946 recs 2%|| 1/40 [00:48<31:15, 48.10s/it]
updating 9822 recs 5%|| 2/40 [01:30<28:26, 44.91s/it]
updating 9915 recs 8%|| 3/40 [02:03<24:23, 39.54s/it]
updating 9853 recs 10%|| 4/40 [02:45<24:18, 40.50s/it]
updating 9781 recs 12%|█▎        | 5/40 [03:31<24:41, 42.33s/it]
updating 9839 recs 15%|█▌        | 6/40 [04:17<24:44, 43.65s/it]
updating 9872 recs 18%|█▊        | 7/40 [05:01<23:57, 43.55s/it]
updating 9753 recs 20%|██        | 8/40 [05:45<23:18, 43.71s/it]
updating 9789 recs 22%|██▎       | 9/40 [06:25<21:59, 42.57s/it]
updating 9948 recs 25%|██▌       | 10/40 [07:08<21:22, 42.76s/it]
updating 9954 recs 28%|██▊       | 11/40 [07:55<21:18, 44.09s/it]
updating 9963 recs 30%|███       | 12/40 [08:36<20:10, 43.22s/it]
updating 9959 recs 32%|███▎      | 13/40 [09:16<18:57, 42.13s/it]
updating 9880 recs 35%|███▌      | 14/40 [09:57<18:07, 41.83s/it]
updating 9965 recs 38%|███▊      | 15/40 [10:38<17:22, 41.70s/it]
updating 9938 recs 40%|████      | 16/40 [11:27<17:28, 43.70s/it]
updating 9918 recs 42%|████▎     | 17/40 [12:14<17:07, 44.68s/it]
updating 9949 recs 45%|████▌     | 18/40 [13:04<17:00, 46.37s/it]
updating 9960 recs 48%|████▊     | 19/40 [13:45<15:41, 44.84s/it]
updating 9967 recs 50%|█████     | 20/40 [14:27<14:38, 43.90s/it]
updating 9960 recs 52%|█████▎    | 21/40 [15:09<13:45, 43.43s/it]
updating 9964 recs 55%|█████▌    | 22/40 [15:52<12:59, 43.32s/it]
updating 9950 recs 57%|█████▊    | 23/40 [16:49<13:22, 47.22s/it]
updating 9945 recs 60%|██████    | 24/40 [17:31<12:14, 45.88s/it]
updating 9783 recs 62%|██████▎   | 25/40 [18:22<11:47, 47.20s/it]
updating 4158 recs 65%|██████▌   | 26/40 [18:42<09:06, 39.04s/it]
updating 9967 recs 68%|██████▊   | 27/40 [19:26<08:48, 40.66s/it]
updating 9972 recs 70%|███████   | 28/40 [20:08<08:14, 41.17s/it]
updating 9976 recs 72%|███████▎  | 29/40 [20:55<07:49, 42.70s/it]
updating 9946 recs 75%|███████▌  | 30/40 [21:47<07:34, 45.49s/it]
updating 9969 recs 78%|███████▊  | 31/40 [22:27<06:34, 43.79s/it]
updating 9971 recs 80%|████████  | 32/40 [23:11<05:51, 43.92s/it]
updating 9952 recs 82%|████████▎ | 33/40 [23:58<05:14, 44.93s/it]
updating 1687 recs 85%|████████▌ | 34/40 [24:08<03:26, 34.38s/it]
updating 9803 recs 88%|████████▊ | 35/40 [24:52<03:06, 37.38s/it]
updating 9830 recs 90%|█████████ | 36/40 [25:45<02:47, 41.94s/it]
updating 9809 recs 92%|█████████▎| 37/40 [26:32<02:10, 43.40s/it]
updating 9753 recs 95%|█████████▌| 38/40 [27:21<01:30, 45.32s/it]
updating 9781 recs 98%|█████████▊| 39/40 [28:08<00:45, 45.78s/it]
updating 9776 recs 
100%|██████████| 40/40 [28:57<00:00, 43.43s/it]

大约半个小时完成训练,此时保存idf_model为pkl文件,训练过程就结束了。
未来在进行增量训练时,可以将idf_model重新载入,继续执行新的批次就可以了。

3 预测部分 DF

获取数据并进行清洗和分词,这个过程耗时比较长,约40秒完成一万个新闻的清洗分词。

tem_df = pkl_dict[some_pkl_file]
tick1 = time.time()
data_list =  list(tem_df['clean_content'].apply(clean_alpha_punc))
pid_list = list(tem_df['MD5'])
tick2 = time.time()
print(tick2-tick1)
42.98098278045654

接下来,假设新数据是有一个data_list,并有一个pid_list与之对应。调用cal_tfidf就可以计算tf_df了。

def dict2df(some_dict):data_part = some_dict['wd_dict']id_part = some_dict['pid']if len(data_part):tem_df = pd.Series(data_part).reset_index()tem_df.columns  = ['wd','tf']tem_df['tf'] = tem_df['tf']/tem_df['tf'].sum()tem_df['pid'] = id_partelse:tem_df = pd.DataFrame([{'wd':' ','tf':1}] ,columns =  ['wd','tf'])tem_df['pid'] = id_partreturn tem_df
def cal_tfidf(data_list= None,pid_list = None, idf_model = None, top_n =10 ):# 模型部分model_doc_len = len(idf_model['pid_set'])idf_dict = idf_model['idf_dict']idf_df = pd.Series(idf_dict).reset_index()idf_df.columns = ['wd', 'idf']corpus_s = pd.Series(data_list)# TF calculationcorpus_s1= corpus_s.apply(lambda x: dict(Counter(x)))_tem_df = pd.DataFrame()_tem_df['pid'] = list(pid_list)_tem_df['wd_dict'] = list(corpus_s1)_s = cols2s(_tem_df, cols=['pid', 'wd_dict'] , cols_key_mapping= ['pid', 'wd_dict'])_s1 = _s.apply(dict2df)_df1 = pd.concat(_s1.tolist(), ignore_index=True)_df2 = pd.merge(_df1, idf_df, how='left', on ='wd')_df2['idf'] = _df2['idf'] .fillna(model_doc_len)_df2['tf_idf'] = _df2['tf'] * np.log(model_doc_len) / _df2['idf']_df3 = _df2.sort_values(['tf_idf'], ascending= False).groupby(['pid']).head(top_n).sort_values(['pid','tf_idf'], ascending=[True,False])return _df3

计算过程不算特别快,但是比分词要快一些。总共耗时约20秒。

tick1 = time.time()
tfidf_df = cal_tfidf(data_list=data_list,pid_list=pid_list, idf_model= idf_model, top_n = 10)
tick2 = time.time()
18.422481060028076

得到的结果如下,这样做的目的主要是为了保留更多的信息供后续分析

	wd	tf	pid	idf	tf_idf
1277666	日坤恒	0.017544	0006678CAC3EA76A62E23589002650B6	3.0	0.075164
1277667	顺维	0.017544	0006678CAC3EA76A62E23589002650B6	3.0	0.075164
1277650	恒顺维	0.017544	0006678CAC3EA76A62E23589002650B6	49.0	0.004602
1277665	折价	0.017544	0006678CAC3EA76A62E23589002650B6	2571.0	0.000088
1277669	一览	0.017544	0006678CAC3EA76A62E23589002650B6	2985.0	0.000076
...	...	...	...	...	...

如果要数据每篇文章的特征词

tfidf_df['wd1'] = tfidf_df['wd'] + ','
tfidf_df.groupby(['pid'])['wd1'].sum()pid
0006678CAC3EA76A62E23589002650B6        日坤恒,顺维,恒顺维,折价,一览,交易平台,大宗,成交,收盘价,成交量,
000A7DE1E813A460992B58471638A313            景嘉微,华鑫,国产化,频频,模块,算力,国产,终端,芯片,研报,
000CDA4BEA946E91F410796FD04F36C4    慧聪,群项,持作,中于,支出额,小额贷款,神州数码,无形资产,流动资产,中关村,
0016B648D7A4E1002F99F88FFE3F5C90       富邦华,花旗银行,交割日,花旗,信用卡,结清,银行业务,欠款,还款,分期,
001A50AA0100A16B6115FD9FF5820B2C          捐送,惠若琪,惠达,恩泽,捐资助学,卫浴,女排,危难,如一日,韩峰,

这样就完成了预测。

4 Next

接下来还有两部分改进工作:

  • 1 将训练和预测过程的代码用对象封装。
  • 2 发布微服务,提供多个idf模型进行特征提取。

这篇关于建模杂谈系列240 增量TF-IDF2-实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849204

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer