文献学习-22-Surgical-VQLA:具有门控视觉语言嵌入的转换器,用于机器人手术中的视觉问题本地化回答

本文主要是介绍文献学习-22-Surgical-VQLA:具有门控视觉语言嵌入的转换器,用于机器人手术中的视觉问题本地化回答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Authors: Long Bai1† , Mobarakol Islam2† , Lalithkumar Seenivasan3 and Hongliang Ren1,3,4∗ , Senior Member, IEEE

Source: 2023 IEEE International Conference on Robotics and Automation (ICRA 2023) May 29 - June 2, 2023. London, UK

Abstract:

尽管有计算机辅助模拟器和录制的外科手术视频,但初级住院医师仍然严重依赖专家来回答他们的问题。然而,专家外科医生往往因临床和学术工作量而超负荷工作,并限制了他们回答问题的时间。为此,开发了一种手术问答系统,以促进机器人辅助手术场景和活动从录制的视频中理解。大多数现有的视觉问答 (VQA) 方法都需要对象检测器和基于区域的特征提取器来提取视觉特征,并将它们与问题的嵌入文本融合以生成答案。然而,(i)由于数据集较小且缺乏边界框注释,手术对象检测模型稀缺;(ii)目前文本和图像等异构模态的融合策略是幼稚的;(iii) 缺少局部应答,这在复杂的手术场景中至关重要。

在本文中,提出了机器人手术中的视觉问题定位-回答(Surgical-VQLA)来定位答案预测过程中的特定手术区域。为了处理异构模态的融合,设计了门控视觉语言嵌入(GVLE)来为语言视觉转换器(LViT)构建输入补丁来预测答案。为了获得定位,将检测头与LViT的预测头并行添加。还集成了广义交集并集 (GIoU) 损失,通过保持问答模型的准确性来提高定位性能。利用来自 EndoVis-17 和 18 的 MICCAI 挑战的公开可用的手术视频对 VQLA 的两个数据集进行注释。验证结果表明,Surgical-VQLA可以更好地理解手术场景,并定位与问答相关的特定区域。GVLE通过展示优于现有基准的性能,提出了一种有效的语言视觉嵌入技术。

主要贡献和优势是:

– 设计并提出了一个外科视觉问题局部化回答 (Surgical-VQLA1) 模型,该模型可以根据给定的输入问题和手术场景预测局部答案。

– 使用新颖的 GVLE 技术为 VQLA 任务提出一种无需检测的 GVLE-LViT 模型,该模型可有效融合异构特征(视觉和文本)。

– 将GIoU损失与交叉熵损失和L1损失相结合,以提高VQLA模型的预测和定位性能。

– 通过广泛的验证,发现 (i) 即使答案与手术相互作用有关,SurgicalVQLA 也可以定位上下文。(ii) 无探测器VQLA通过避免计算昂贵且容易出现错误的检测模块,展示了更好的特征学习,并促进了外科问题本地化回答系统的端到端实时应用。(iii) 拟议的GVLE有效地融合了视觉和文字嵌入的异构模式,并优于现有方法。

图 1.针对传统 VQA 任务,提出的 VQLA pipline概述。方法不需要对象建议,边界框预测可以与分类结果一起输出。

图 2.提出的网络架构。机器人手术图像为预训练的特征提取器提供信息,问题为定制的分词器提供信息。然后,GVLE模块嵌入输入特征,并优化视觉和文字嵌入的组合。融合特征通过预训练的 ViT 模块传播。最后,由带有softmax的分类头和带有FFN的定位头给出答案和边界框预测。

表一 GVLE-LVIT模型与基于VISUALBERT 和VISUALBERT RESMLP 的模型的比较实验。RN 表示 RESNET。

图 3.通过VisualBERT [6]、VisualBERT ResMLP [2]和GVLE-LViT模型生成答案和边界框的几个例子。与基线模型相比,本模型的定位和分类预测结果更准确。边界框颜色的表示如下:红色:Ground-truth,蓝色:VisualBERT [6],绿色:VisualBERT ResMLP [2],黄色:GVLE-LViT (Ours)。

表 II GVLE-LVIT模型在VQLA任务上的K折比较实验,与基于VISUALBERT [6]和VISUALBERT RESMLP [2]的模型。

表 III 基于 VISUALBERT [6] 和 VISUALBERT RESMLP [2] 的模型,在提出的 GVLE-LVIT 模型上具有不同定位损失函数组合的消融研究

表IV 基于GVLE语言-视觉嵌入融合与CONCAT[6]、AFF[13]和IAFF [13]融合策略的比较实验。

本文设计并提出了一个外科视觉问题局部化回答(Surgical-VQLA)模型,该模型可以根据给定的输入问题和手术场景回答“什么”和“在哪里?”,使学生更容易推断“为什么?”。具体来说,提出了一种 GVLE-LViT 模型,该模型使用提出的 GVLE 技术更好地融合异构特征(视觉和文本),该技术在两个外科数据集上的外科-VQLA 任务中优于现有的 SOTA 模型。此外,将GIoU损失与交叉熵损失和L1损失相结合,以提高模型的预测和定位性能。通过广泛的比较、k 倍和消融研究,证明使用提出的损失组合训练的 GVLE-LViT 优于现有的 SOTA 模型。SurgicalVQLA系统可能成为外科培训中的重要辅助工具。虽然所提出的VQLA模型旨在提供可靠的答案预测,但在某种程度上,答案的定位可以帮助量化预测对新数据的可靠性,如果定位远于目标仪器或组织,用户可以推断预测可能是错误的,或者输入数据是分布外数据。因此,使用定位信息来预测预测可靠性可能是未来可能的工作。从应用的角度来看,提出的VQLA模型为医学诊断开辟了新的可能应用。更复杂的数据集和具有挑战性的 QA 对将进一步提高 Surgical-VQLA 系统的前景。

Reference:

[1] Bai, L., Islam, M., Seenivasan, L., & Ren, H. (2023, May). Surgical-vqla: Transformer with gated vision-language embedding for visual question localized-answering in robotic surgery. In 2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6859-6865). IEEE.

这篇关于文献学习-22-Surgical-VQLA:具有门控视觉语言嵌入的转换器,用于机器人手术中的视觉问题本地化回答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848794

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at