文献学习-22-Surgical-VQLA:具有门控视觉语言嵌入的转换器,用于机器人手术中的视觉问题本地化回答

本文主要是介绍文献学习-22-Surgical-VQLA:具有门控视觉语言嵌入的转换器,用于机器人手术中的视觉问题本地化回答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Authors: Long Bai1† , Mobarakol Islam2† , Lalithkumar Seenivasan3 and Hongliang Ren1,3,4∗ , Senior Member, IEEE

Source: 2023 IEEE International Conference on Robotics and Automation (ICRA 2023) May 29 - June 2, 2023. London, UK

Abstract:

尽管有计算机辅助模拟器和录制的外科手术视频,但初级住院医师仍然严重依赖专家来回答他们的问题。然而,专家外科医生往往因临床和学术工作量而超负荷工作,并限制了他们回答问题的时间。为此,开发了一种手术问答系统,以促进机器人辅助手术场景和活动从录制的视频中理解。大多数现有的视觉问答 (VQA) 方法都需要对象检测器和基于区域的特征提取器来提取视觉特征,并将它们与问题的嵌入文本融合以生成答案。然而,(i)由于数据集较小且缺乏边界框注释,手术对象检测模型稀缺;(ii)目前文本和图像等异构模态的融合策略是幼稚的;(iii) 缺少局部应答,这在复杂的手术场景中至关重要。

在本文中,提出了机器人手术中的视觉问题定位-回答(Surgical-VQLA)来定位答案预测过程中的特定手术区域。为了处理异构模态的融合,设计了门控视觉语言嵌入(GVLE)来为语言视觉转换器(LViT)构建输入补丁来预测答案。为了获得定位,将检测头与LViT的预测头并行添加。还集成了广义交集并集 (GIoU) 损失,通过保持问答模型的准确性来提高定位性能。利用来自 EndoVis-17 和 18 的 MICCAI 挑战的公开可用的手术视频对 VQLA 的两个数据集进行注释。验证结果表明,Surgical-VQLA可以更好地理解手术场景,并定位与问答相关的特定区域。GVLE通过展示优于现有基准的性能,提出了一种有效的语言视觉嵌入技术。

主要贡献和优势是:

– 设计并提出了一个外科视觉问题局部化回答 (Surgical-VQLA1) 模型,该模型可以根据给定的输入问题和手术场景预测局部答案。

– 使用新颖的 GVLE 技术为 VQLA 任务提出一种无需检测的 GVLE-LViT 模型,该模型可有效融合异构特征(视觉和文本)。

– 将GIoU损失与交叉熵损失和L1损失相结合,以提高VQLA模型的预测和定位性能。

– 通过广泛的验证,发现 (i) 即使答案与手术相互作用有关,SurgicalVQLA 也可以定位上下文。(ii) 无探测器VQLA通过避免计算昂贵且容易出现错误的检测模块,展示了更好的特征学习,并促进了外科问题本地化回答系统的端到端实时应用。(iii) 拟议的GVLE有效地融合了视觉和文字嵌入的异构模式,并优于现有方法。

图 1.针对传统 VQA 任务,提出的 VQLA pipline概述。方法不需要对象建议,边界框预测可以与分类结果一起输出。

图 2.提出的网络架构。机器人手术图像为预训练的特征提取器提供信息,问题为定制的分词器提供信息。然后,GVLE模块嵌入输入特征,并优化视觉和文字嵌入的组合。融合特征通过预训练的 ViT 模块传播。最后,由带有softmax的分类头和带有FFN的定位头给出答案和边界框预测。

表一 GVLE-LVIT模型与基于VISUALBERT 和VISUALBERT RESMLP 的模型的比较实验。RN 表示 RESNET。

图 3.通过VisualBERT [6]、VisualBERT ResMLP [2]和GVLE-LViT模型生成答案和边界框的几个例子。与基线模型相比,本模型的定位和分类预测结果更准确。边界框颜色的表示如下:红色:Ground-truth,蓝色:VisualBERT [6],绿色:VisualBERT ResMLP [2],黄色:GVLE-LViT (Ours)。

表 II GVLE-LVIT模型在VQLA任务上的K折比较实验,与基于VISUALBERT [6]和VISUALBERT RESMLP [2]的模型。

表 III 基于 VISUALBERT [6] 和 VISUALBERT RESMLP [2] 的模型,在提出的 GVLE-LVIT 模型上具有不同定位损失函数组合的消融研究

表IV 基于GVLE语言-视觉嵌入融合与CONCAT[6]、AFF[13]和IAFF [13]融合策略的比较实验。

本文设计并提出了一个外科视觉问题局部化回答(Surgical-VQLA)模型,该模型可以根据给定的输入问题和手术场景回答“什么”和“在哪里?”,使学生更容易推断“为什么?”。具体来说,提出了一种 GVLE-LViT 模型,该模型使用提出的 GVLE 技术更好地融合异构特征(视觉和文本),该技术在两个外科数据集上的外科-VQLA 任务中优于现有的 SOTA 模型。此外,将GIoU损失与交叉熵损失和L1损失相结合,以提高模型的预测和定位性能。通过广泛的比较、k 倍和消融研究,证明使用提出的损失组合训练的 GVLE-LViT 优于现有的 SOTA 模型。SurgicalVQLA系统可能成为外科培训中的重要辅助工具。虽然所提出的VQLA模型旨在提供可靠的答案预测,但在某种程度上,答案的定位可以帮助量化预测对新数据的可靠性,如果定位远于目标仪器或组织,用户可以推断预测可能是错误的,或者输入数据是分布外数据。因此,使用定位信息来预测预测可靠性可能是未来可能的工作。从应用的角度来看,提出的VQLA模型为医学诊断开辟了新的可能应用。更复杂的数据集和具有挑战性的 QA 对将进一步提高 Surgical-VQLA 系统的前景。

Reference:

[1] Bai, L., Islam, M., Seenivasan, L., & Ren, H. (2023, May). Surgical-vqla: Transformer with gated vision-language embedding for visual question localized-answering in robotic surgery. In 2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6859-6865). IEEE.

这篇关于文献学习-22-Surgical-VQLA:具有门控视觉语言嵌入的转换器,用于机器人手术中的视觉问题本地化回答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848794

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe