【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗)

2024-03-26 09:36

本文主要是介绍【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



快乐的流畅:个人主页


个人专栏:《C语言》《数据结构世界》《进击的C++》

远方有一堆篝火,在为久候之人燃烧!

文章目录

  • 引言
  • 一、红黑树的概念
  • 二、红黑树的模拟实现
    • 2.1 结点
    • 2.2 成员变量
    • 2.3 插入
      • 情况一:uncle在左,parent在右
        • ==如果uncle存在且为红色==:
        • ==如果uncle不存在,或者存在且为黑色==:
      • 情况二:parent在左,uncle在右
        • ==如果uncle存在且为红色==:
        • ==如果uncle不存在,或者存在且为黑色==:
  • 三、红黑树的验证
  • 四、红黑树的性能
    • 4.1 优势
    • 4.2 适用场景

引言

之前学习的AVL树,是一种平衡二叉搜索树,它追求绝对平衡,从而导致插入和删除性能较差。而今天学习的红黑树,是另一种平衡二叉搜索树,它追求相对平衡,使得增删查改的性能都极佳,时间复杂度皆为O(log2N),是数据结构中的精华,天才般的设想!

一、红黑树的概念

红黑树,顾名思义,其节点有红和黑两种颜色。

之所以新增结点颜色的标记,是因为通过结点着色方式的限制,能够让红黑树的最长路径不超过最短路径的两倍,以保证相对平衡。


红黑树满足五条性质:

  1. 所有结点非黑即红
  2. 根结点为黑色
  3. NIL结点为黑色
  4. 红色结点的子结点必为黑色
  5. 任意结点到其叶子NIL结点的所有路径,都包含相同的黑色结点

在红黑树中,NIL节点(也称为空节点)是叶子节点的一种特殊表示。它们不是实际存储数据的节点,而是树结构中的占位符,用于定义树的边界。所有的红黑树都以NIL节点为叶子节点,这些NIL节点在视觉上通常不被画出来。


性质解读:

  • 性质4:表明不能有连续的红色结点
  • 性质4+性质5:
    • 理论最短路径:全为黑色结点
    • 理论最长路径:红黑相间

这样,就保证了最长路径不超过最短路径的两倍。

二、红黑树的模拟实现

2.1 结点

enum Color
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Color _col;RBTreeNode(const pair<K, V>& kv): _left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};

细节:

  1. 使用三叉链,增加了指向parent的指针
  2. 使用KV模型,数据存储键值对pair
  3. 结点储存颜色,同时颜色使用枚举
  4. 结点的颜色初始化为红色

说明:为什么结点的颜色初始化为红色呢?因为插入新节点时(不为根部),如果插入黑色,就会直接破坏性质5,导致每条路径黑结点数目不同;而如果插入红色,有可能不会破坏性质4,所以结点初始化为红色更优。

2.2 成员变量

template<class K, class V>
class RBTree
{
protected:typedef RBTreeNode<K, V> Node;
public:
protected:Node* _root = nullptr;
};

2.3 插入

因为红黑树也是二叉搜索树,所以默认成员函数和遍历与之前写的没什么不同,这里重点讲解红黑树的插入。

bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandparent = parent->_parent;if (grandparent->_right == parent)//uncle在左,parent在右{Node* uncle = grandparent->_left;if (uncle && uncle->_col == RED)//uncle为红,变色+向上调整{parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;parent = cur->_parent;}else//uncle为空或为黑,变色+旋转{if (parent->_right == cur)//左单旋{RotateL(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else//右左旋{RotateR(parent);RotateL(grandparent);cur->_col = BLACK;grandparent->_col = RED;}}}else//parent在左,uncle在右{Node* uncle = grandparent->_right;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;parent = cur->_parent;}else{if (parent->_left == cur)//右单旋{RotateR(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else//左右旋{RotateL(parent);RotateR(grandparent);cur->_col = BLACK;grandparent->_col = RED;}}}}_root->_col = BLACK;return true;
}

思路:

  1. 以二叉搜索树的方式正常插入
  2. 讨论并调整结点的颜色,以及调整结构,使之满足红黑树的性质

循环条件:while (parent && parent->_col == RED)

保证了parent存在且为红,grandparent存在且为黑


情况一:uncle在左,parent在右

如果uncle存在且为红色

处理方法:

  1. 将parent和uncle变黑,grandparent变红
  2. cur = grandparent,parent = cur->_parent,继续向上调整
  3. 防止grandparent为根节点却变红,在循环结束后将根节点变为黑色
如果uncle不存在,或者存在且为黑色

当cur在右部外侧时:

处理方法:

  1. 先对grandparent进行左单旋
  2. 再将parent变黑,grandparent变红

当cur在右部内侧时:

处理方法:

  1. 先对parent进行右单旋
  2. 再对grandparent进行左单旋
  3. 最后将cur变黑,grandparent变红

情况二:parent在左,uncle在右

如果uncle存在且为红色

处理方法:

  1. 将parent和uncle变黑,grandparent变红
  2. cur = grandparent,parent = cur->_parent,继续向上调整
  3. 防止grandparent为根节点却变红,在循环结束后将根节点变为黑色
如果uncle不存在,或者存在且为黑色

当cur在左部外侧时:

处理方法:

  1. 先对grandparent进行右单旋
  2. 再将parent变黑,grandparent变红

当cur在左部内侧时:

处理方法:

  1. 先对parent进行左单旋
  2. 再对grandparent进行右单旋
  3. 最后将cur变黑,grandparent变红

红黑树插入的核心口诀uncle存在且为红,变色+向上调整,uncle不存在或为黑,变色+旋转


附上旋转的实现

void RotateL(Node* parent)
{Node* grandparent = parent->_parent;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;parent->_parent = subR;if (grandparent){if (grandparent->_right == parent){grandparent->_right = subR;}else{grandparent->_left = subR;}}else{_root = subR;}subR->_parent = grandparent;
}void RotateR(Node* parent)
{Node* grandparent = parent->_parent;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR){subLR->_parent = parent;}subL->_right = parent;parent->_parent = subL;if (grandparent){if (grandparent->_right == parent){grandparent->_right = subL;}else{grandparent->_left = subL;}}else{_root = subL;}subL->_parent = grandparent;
}

三、红黑树的验证

bool IsBalance()
{if (_root && _root->_col == RED){cout << "根结点为红色" << endl;return false;}int benchMark = 0;//基准值Node* cur = _root;while (cur){if (cur->_col == BLACK){++benchMark;}cur = cur->_right;}return Check(_root, 0, benchMark);
}bool Check(Node* root, int blackNum, int benchMark)
{if (root == nullptr){if (blackNum != benchMark){cout << "某条路径黑色结点数量不相等" << endl;return false;}return true;}if (root->_col == BLACK){++blackNum;}if (root->_col == RED && root->_parent && root->_parent->_col == RED){cout << "存在连续的红色结点" << endl;return false;}return Check(root->_left, blackNum, benchMark)&& Check(root->_right, blackNum, benchMark);
}

细节:

  1. 验证根节点是否为黑
  2. 先计算出一条路径的黑色结点个数作为基准值,再在递归中比较每条路径的黑色结点是否相等
  3. 若该节点为红,检测其parent是否为红,判断是否存在连续的红色节点

四、红黑树的性能

4.1 优势

红黑树是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对AVL树而言,降低了插入和旋转的次数

4.2 适用场景

因此,在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。


真诚点赞,手有余香

这篇关于【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848045

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元