【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗)

2024-03-26 09:36

本文主要是介绍【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



快乐的流畅:个人主页


个人专栏:《C语言》《数据结构世界》《进击的C++》

远方有一堆篝火,在为久候之人燃烧!

文章目录

  • 引言
  • 一、红黑树的概念
  • 二、红黑树的模拟实现
    • 2.1 结点
    • 2.2 成员变量
    • 2.3 插入
      • 情况一:uncle在左,parent在右
        • ==如果uncle存在且为红色==:
        • ==如果uncle不存在,或者存在且为黑色==:
      • 情况二:parent在左,uncle在右
        • ==如果uncle存在且为红色==:
        • ==如果uncle不存在,或者存在且为黑色==:
  • 三、红黑树的验证
  • 四、红黑树的性能
    • 4.1 优势
    • 4.2 适用场景

引言

之前学习的AVL树,是一种平衡二叉搜索树,它追求绝对平衡,从而导致插入和删除性能较差。而今天学习的红黑树,是另一种平衡二叉搜索树,它追求相对平衡,使得增删查改的性能都极佳,时间复杂度皆为O(log2N),是数据结构中的精华,天才般的设想!

一、红黑树的概念

红黑树,顾名思义,其节点有红和黑两种颜色。

之所以新增结点颜色的标记,是因为通过结点着色方式的限制,能够让红黑树的最长路径不超过最短路径的两倍,以保证相对平衡。


红黑树满足五条性质:

  1. 所有结点非黑即红
  2. 根结点为黑色
  3. NIL结点为黑色
  4. 红色结点的子结点必为黑色
  5. 任意结点到其叶子NIL结点的所有路径,都包含相同的黑色结点

在红黑树中,NIL节点(也称为空节点)是叶子节点的一种特殊表示。它们不是实际存储数据的节点,而是树结构中的占位符,用于定义树的边界。所有的红黑树都以NIL节点为叶子节点,这些NIL节点在视觉上通常不被画出来。


性质解读:

  • 性质4:表明不能有连续的红色结点
  • 性质4+性质5:
    • 理论最短路径:全为黑色结点
    • 理论最长路径:红黑相间

这样,就保证了最长路径不超过最短路径的两倍。

二、红黑树的模拟实现

2.1 结点

enum Color
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Color _col;RBTreeNode(const pair<K, V>& kv): _left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};

细节:

  1. 使用三叉链,增加了指向parent的指针
  2. 使用KV模型,数据存储键值对pair
  3. 结点储存颜色,同时颜色使用枚举
  4. 结点的颜色初始化为红色

说明:为什么结点的颜色初始化为红色呢?因为插入新节点时(不为根部),如果插入黑色,就会直接破坏性质5,导致每条路径黑结点数目不同;而如果插入红色,有可能不会破坏性质4,所以结点初始化为红色更优。

2.2 成员变量

template<class K, class V>
class RBTree
{
protected:typedef RBTreeNode<K, V> Node;
public:
protected:Node* _root = nullptr;
};

2.3 插入

因为红黑树也是二叉搜索树,所以默认成员函数和遍历与之前写的没什么不同,这里重点讲解红黑树的插入。

bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandparent = parent->_parent;if (grandparent->_right == parent)//uncle在左,parent在右{Node* uncle = grandparent->_left;if (uncle && uncle->_col == RED)//uncle为红,变色+向上调整{parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;parent = cur->_parent;}else//uncle为空或为黑,变色+旋转{if (parent->_right == cur)//左单旋{RotateL(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else//右左旋{RotateR(parent);RotateL(grandparent);cur->_col = BLACK;grandparent->_col = RED;}}}else//parent在左,uncle在右{Node* uncle = grandparent->_right;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;parent = cur->_parent;}else{if (parent->_left == cur)//右单旋{RotateR(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else//左右旋{RotateL(parent);RotateR(grandparent);cur->_col = BLACK;grandparent->_col = RED;}}}}_root->_col = BLACK;return true;
}

思路:

  1. 以二叉搜索树的方式正常插入
  2. 讨论并调整结点的颜色,以及调整结构,使之满足红黑树的性质

循环条件:while (parent && parent->_col == RED)

保证了parent存在且为红,grandparent存在且为黑


情况一:uncle在左,parent在右

如果uncle存在且为红色

处理方法:

  1. 将parent和uncle变黑,grandparent变红
  2. cur = grandparent,parent = cur->_parent,继续向上调整
  3. 防止grandparent为根节点却变红,在循环结束后将根节点变为黑色
如果uncle不存在,或者存在且为黑色

当cur在右部外侧时:

处理方法:

  1. 先对grandparent进行左单旋
  2. 再将parent变黑,grandparent变红

当cur在右部内侧时:

处理方法:

  1. 先对parent进行右单旋
  2. 再对grandparent进行左单旋
  3. 最后将cur变黑,grandparent变红

情况二:parent在左,uncle在右

如果uncle存在且为红色

处理方法:

  1. 将parent和uncle变黑,grandparent变红
  2. cur = grandparent,parent = cur->_parent,继续向上调整
  3. 防止grandparent为根节点却变红,在循环结束后将根节点变为黑色
如果uncle不存在,或者存在且为黑色

当cur在左部外侧时:

处理方法:

  1. 先对grandparent进行右单旋
  2. 再将parent变黑,grandparent变红

当cur在左部内侧时:

处理方法:

  1. 先对parent进行左单旋
  2. 再对grandparent进行右单旋
  3. 最后将cur变黑,grandparent变红

红黑树插入的核心口诀uncle存在且为红,变色+向上调整,uncle不存在或为黑,变色+旋转


附上旋转的实现

void RotateL(Node* parent)
{Node* grandparent = parent->_parent;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;parent->_parent = subR;if (grandparent){if (grandparent->_right == parent){grandparent->_right = subR;}else{grandparent->_left = subR;}}else{_root = subR;}subR->_parent = grandparent;
}void RotateR(Node* parent)
{Node* grandparent = parent->_parent;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR){subLR->_parent = parent;}subL->_right = parent;parent->_parent = subL;if (grandparent){if (grandparent->_right == parent){grandparent->_right = subL;}else{grandparent->_left = subL;}}else{_root = subL;}subL->_parent = grandparent;
}

三、红黑树的验证

bool IsBalance()
{if (_root && _root->_col == RED){cout << "根结点为红色" << endl;return false;}int benchMark = 0;//基准值Node* cur = _root;while (cur){if (cur->_col == BLACK){++benchMark;}cur = cur->_right;}return Check(_root, 0, benchMark);
}bool Check(Node* root, int blackNum, int benchMark)
{if (root == nullptr){if (blackNum != benchMark){cout << "某条路径黑色结点数量不相等" << endl;return false;}return true;}if (root->_col == BLACK){++blackNum;}if (root->_col == RED && root->_parent && root->_parent->_col == RED){cout << "存在连续的红色结点" << endl;return false;}return Check(root->_left, blackNum, benchMark)&& Check(root->_right, blackNum, benchMark);
}

细节:

  1. 验证根节点是否为黑
  2. 先计算出一条路径的黑色结点个数作为基准值,再在递归中比较每条路径的黑色结点是否相等
  3. 若该节点为红,检测其parent是否为红,判断是否存在连续的红色节点

四、红黑树的性能

4.1 优势

红黑树是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对AVL树而言,降低了插入和旋转的次数

4.2 适用场景

因此,在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。


真诚点赞,手有余香

这篇关于【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848045

相关文章

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++