Lucene 源码分析——BKD-Tree

2024-03-26 07:20
文章标签 分析 源码 tree lucene bkd

本文主要是介绍Lucene 源码分析——BKD-Tree,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Lucene 源码分析——BKD-Tree - AIQ

Bkd-Tree

Bkd-Tree作为一种基于K-D-B-tree的索引结构,用来对多维度的点数据(multi-dimensional point data)集进行索引。Bkd-Tree跟K-D-B-tree的理论部分在本篇文章中不详细介绍,对应的两篇论文在附件中,感兴趣的朋友可以自行下载阅读。本篇文章中主要介绍Bkd-Tree在Lucene中的实现,即生成树的过程。

预备知识

如果只是想了解Bkd-Tree生成过程,那么这节内容可以跳过,这块内容是为介绍索引文件.dim、.dii作准备的。

点数据

点数据(Point Data),源码中又称为点值(Point Value),它是由多个数值类型组成。
图1:

1.png

上图中由4个int类型数值组成一个点数据/点值,并且根据点数据中的数值个数定义了维度个数。上图中即有四个维度。同一个域名的点数据必须有相同的维度个数,并且在当前7.5.0版本中,维度个数最多为8个。

int numPoints

numPoints是一个从0开始递增的值,可以理解为是每一个点数据的一个唯一编号,并且通过这个编号能映射出该点数据属于哪一个文档(document)。映射关系则是通过docIDs[ ]数组实现。

int docIDs[ ]数组

docIDs[ ]数组在PointValuesWriter.java中定义,数组下标是点数据的编号numPoint,数组元素是点数据所属的文档号。由于一篇文档中可以有多个点数据,所以相同的数组元素对应的多个数组下标值,即numPoints,即点数据,都是属于同一个文档。
图2:

2.png

上图中只添加了2篇文档,处理顺序按照文档号的顺序,所以文档0的点数据的numPoints的值为0,另外一篇文档可以有多个点数,所以numPoints的值分别为1、2。生成的docIDs[]数组如下:
图3:

3.png

int ord[ ]数组

ord数组的数组元素为numPoints,下面的一句话很重要:ord数组中的元素是有序的,排序规则不是按照numPoints的值,而是按照numPoints对应的点数据的值。这里ord数组的用法跟SortedDocValues中的sortedValues[]数组是一样的用法。例如根据图2中的点数据,如果我们按照第三个维度的值,即"99"、"23"、"12"来描述点数据的大小关系,那么ord数组如下图所示:
图4:

4.png

这里先提一句,在生成BKD-Tree之后,叶子节点中的点数据会根据某个维度进行排序的,并且所有叶子节点中的点数据的大小关系就存放在ord[]数组中,后面的内容会详细介绍这过程。

流程图

一句话概括整个流程的话就是:根据某一个维度将点数据集划分为两部分,递归式将两部分的点数据子集进行划分,最终生成一个满二叉树
图5:

5.png

点数据集

图6:

6.png

点数据集即为待处理的点数据集合。

是否要切分?

图7:

7.png

如果数据集的个数大于1024个,那么需要进行拆分。在源码中并不是通过判断数据集的个数,而是在建立Bkd-Tree之前就预先计算出当前数据会对应生成节点(node)的个数(可以认为每个节点中的数据都是空的),然后采用深度遍历方式处理每一个节点,通过节点编号来判断是否为叶子节点。如果不是叶子节点,说明要切分(节点赋值)。

选出切分维度

图8:

8.png

一个点数据中有多个维度,例如图1中就有四个维度。

  • 本文地址:Lucene 源码分析——BKD-Tree
  • 本文版权归作者和AIQ共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出

  1. 先计算出切分次数最多的那个维度,切分次数记为maxNumSplits,如果有一个维度的切分次数小于 (maxNumSplits / 2) ,并且该维度中的最大跟最小值不相同,那么令该维度为切分维度。
  2. 计算出每一个维度中最大值跟最小值的差值,差值最大的作为切分维度(篇幅原因,下面的例子中仅使用了这种判定方式)。

条件1优先条件2。

点数据集排序

图9:

9.png

当确定了切分维度后,我们对当前节点中的点数据集进行排序,排序规则根据该每个点数据中的该维度的值,排序算法使用最大有效位的基数排序(MSB radix sort)。

切分出左子树点数据集、切分出右子树点数据集

图10:

10.png

执行完排序操作后,当前节点中的点数据集数量为N,那么将前 (N / 2)个的点数据集划分为左子树,剩余的划分为右子树。
这么划分的目的使得无论初始的点数据集是哪种数据分布,总是能生成一颗满二叉树

是否退出

图11:

11.png

当前节点不需要切分,需要判断下算法是否需要退出。

结束

  • 当前节点是满二叉树的最右子树,那么算法结束,可以退出。
  • 当前树中只有一个节点,且该节点不需要切分,那么算法结束,可以退出。

返回上一层

  • 当前处理的节点是左子树节点或者是非最右子树节点,说明该节点是由 划分左右子树生成的,即算法还处在递归中,当不需要划分后,返回到递归的上一层。

例子

Lucene 7.5.0版本源码中当一个节点中的点数据个数大于1024才会进行切分,为了能简单示例,例子中假设一个节点中的点数据个数大于2个才会进行切分,并且点数据的维度为2。

点数据集

图12:

12.png

上图中一共有8个点数据,每个点数据有两个维度。为了描述方便,下面统称为x维度,跟y维度。

处理节点1

  • 是否要切分:初始的数据集作为第一个节点,即节点1开始进行切分,该节点中有8个数据,大于节点切分的条件值2,所以需要切分。
  • 选出切分维度:x维度的最大值跟最小值的差值为7 ,而y维度的最大值跟最小值的差值为9,所以当前节点的切分维度为y维度。
  • 点数据排序:对8个点数据按照y维度的值进行排序,排序后的结果如下:
{1,2} -> {4,3} -> {3,4} -> {4,6} -> {6,7} -> {2,8} -> {8,9} -> {7,11}
  • 切分出左子树数据集、切分出右子树数据集:当前节点个数为8,从排序后的点数据中取前一半的点数据划为左子树(节点2),剩余的划为右子树(节点3)。
左子树:{1,2}、{4,3}、{3,4}、{4,6}
右子树:{6,7}、{2,8}、{8,9}、{7,11}

图13:

13.png

处理节点2

  • 是否要切分:节点2中有4个数据,大于节点切分的条件值2,所以需要切分。
  • 选出切分维度:x维度的最大值跟最小值的差值为3 ,而y维度的最大值跟最小值的差值为4,所以当前节点的切分维度为y维度。
  • 点数据排序:对4个点数据按照y维度的值进行排序,排序后的结果如下:
{1,2}、{4,3}、{3,4}、{4,6}
  • 切分出左子树数据集、切分出右子树数据集:当前节点个数为4,从排序后的点数据中取前一半的点数据划为左子树(节点4),剩余的划为右子树(节点5)。
左子树:{1,2}、{4,3}
右子树:{3,4}、{4,6}

图14:

14.png

处理节点4、5

源码中对叶子结点还有一些处理,目的是为了生成索引文件作准备,在随后的介绍索引文件.dii、.dim时候会介绍跟叶子节点相关的知识,这篇文章主要介绍生成Bkd-Tree的过程。

处理节点3

  • 是否要切分:节点3中有4个数据,大于节点切分的条件值2,所以需要切分。
  • 选出切分维度:x维度的最大值跟最小值的差值为6 ,而y维度的最大值跟最小值的差值为4,所以当前节点的切分维度为x维度。
  • 点数据排序:对4个点数据按照x维度的值进行排序,排序后的结果如下:
{2,8}、{6,7}、{7,11}、{8,9}
  • 切分出左子树数据集、切分出右子树数据集:当前节点个数为4,从排序后的点数据中取前一半的点数据划为左子树(节点6),剩余的划为右子树(节点7)。
左子树:{2,8}、{6,7}
右子树:{7,11}、{8,9}

图15:

15.png

处理节点6、7

同节点4、5

结语

本篇文件介绍了Bkd-Tree在Lucene中的实现,即生成满二叉树的过程,再以后介绍索引文件.dii、.dim中会继续讲一些细节的东西。另外在随后的文章中会介绍Bkd-Tree插入和更新的内容。

原文地址:https://www.amazingkoala.com.cn/Lucene/gongjulei/2019/0422/52.html

这篇关于Lucene 源码分析——BKD-Tree的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/847692

相关文章

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

springboot集成Lucene的详细指南

《springboot集成Lucene的详细指南》这篇文章主要为大家详细介绍了springboot集成Lucene的详细指南,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起... 目录添加依赖创建配置类创建实体类创建索引服务类创建搜索服务类创建控制器类使用示例以下是 Spring

Android实现一键录屏功能(附源码)

《Android实现一键录屏功能(附源码)》在Android5.0及以上版本,系统提供了MediaProjectionAPI,允许应用在用户授权下录制屏幕内容并输出到视频文件,所以本文将基于此实现一个... 目录一、项目介绍二、相关技术与原理三、系统权限与用户授权四、项目架构与流程五、环境配置与依赖六、完整

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思