【数学基础篇】---详解极限与微分学与Jensen 不等式

2024-03-25 16:18

本文主要是介绍【数学基础篇】---详解极限与微分学与Jensen 不等式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前述

数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识。

二、极限

1.例子
当x趋于0的时候,sin(x)与tan(x)都趋于0。但是哪一个趋于0的速度更快一些呢?
我们考察这两个函数的商的极限,
在这里插入图片描述
所以当 x → 0 的时候,sin(x) 与 tan(x) 是同样级别的无穷小。
2.相关定理
如果三个函数满足 f(x) ≤ g(x) ≤ h(x), 而且他们都在 x0 处有极限,那么
在这里插入图片描述
重要极限:
在这里插入图片描述

三、微分学

微分学的核心思想:逼近。
1.函数导数:
如果一个函数 f(x) 在 x0 附近有定义,而且存在极限。
在这里插入图片描述
那么 f(x) 在 x0 处可导且导数 f ′ (x0) = L。
无穷小量表述:线性逼近。
在这里插入图片描述
Definition(函数的高阶导数)
如果函数的导数函数仍然可导,那么导数函数的导数是二阶导数,二阶导数函数的导数是三阶导数。
一般地记为
在这里插入图片描述
或者进一步
在这里插入图片描述
导数是对函数进行线性逼近,高阶导数是对导数函数的进一步逼近,因为没有更好的办法,所以数学家选择继续使用线性逼近。
Example (初等函数的导数)
在这里插入图片描述
2.微分学:多元函数
在这里插入图片描述
且 Lx,Ly 分别是 f 在 x, y 方向上的偏导数。一般记为
在这里插入图片描述
3.Definition (高阶偏导数)
在这里插入图片描述
并且二阶偏导数为
在这里插入图片描述
4.Example (偏导数的例子)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
5.求导法则
在这里插入图片描述
6.总结
微分学的核心思想是逼近。
一阶导数:线性逼近
二阶导数:二次逼近
导数计算:求导法则

四、泰勒级数

1.泰勒/迈克劳林级数: 多项式逼近。
在这里插入图片描述
2.泰勒级数: 例子
在这里插入图片描述
3.应用
泰勒级数是一元微分逼近的顶峰,所以有关于一元微分逼近的问题请尽情使用。
罗比塔法则
在这里插入图片描述
证明:
因为是在 x0 附近的极限问题,我们使用泰勒级数来思考这个问题
在这里插入图片描述
在这里插入图片描述
4.小结 (泰勒级数)
泰勒级数本质是多项式逼近
特殊函数的泰勒级数可以适当记一下
泰勒级数可以应用于很多与逼近相关的问题。

五、牛顿法与梯度下降法

很多机器学习或者统计的算法最后都转化成一个优化的问题。也就是求某一个损失函数的极小值的问题,在本课范围内我们考虑可微分的函数极小值问题。
1.优化问题
对于一个无穷可微的函数f(x),如何寻找他的极小值点。
极值点条件。
全局极小值:如果对于任何 x˜, 都有 f(x∗) ≤ f(˜x),那么 x∗ 就是全局极小值点。
局部极小值:如果存在一个正数 δ 使得,对于任何满足 |x˜ − x∗| < δ 的 x˜, 都有 f(x∗) ≤ f(˜x),那么 x∗ 就是局部极 小值点。(方圆 δ 内的极小值点)
不论是全局极小值还是局部极小值一定满足一阶导数/梯度 为零,f ′ = 0 或者 ∇f = 0。
2.局部极值算法
这两种方法都只能寻找局部极值这两种方法都要求必须给出一个初始点 x0
数学原理:牛顿法使用二阶逼近(等价于使用二阶泰勒级数),梯度下降法使用一阶逼近
牛顿法对局部凸的函数找到极小值,对局部凹的函数找到极大值,对局部不凸不凹的可能会找到鞍点。
梯度下降法一般不会找到最大值,但是同样可能会找到鞍点。
当初始值选取合理的情况下,牛顿法比梯度下降法收敛速度快。
牛顿法要求估计二阶导数,计算难度更大.
3.牛顿法
首先在初始点x0处,写出二阶泰勒级数。
在这里插入图片描述在这里插入图片描述多变量函数二阶逼近
在这里插入图片描述
在这里插入图片描述
4.梯度下降法:多变量函数一阶逼近
如果函数 f(x) 是个多元函数,x 是一个向量,在 x0 处对f做线性逼近。
在这里插入图片描述
5.小结 (牛顿法与梯度下降法)
牛顿法与梯度下降法本质上都是对目标函数进行局部逼近,因为是局部逼近所以也只能寻找局部极值。
牛顿法收敛步骤比较少,但是梯度下降法每一步计算更加简单,牛顿法不仅给出梯度的方向还给出具体应该走多少。梯度法的r只能自己定义。
不同的算法之间很难说哪一个更好,选择算法还要具体问题具体分析(这也是数据科学家存在的意义之一)。
梯度本身是向着最大方向的,加个负号才是向着最小方向的。

六、凸函数与琴生不等式

1.Definition (凸函数)
在这里插入图片描述
把如上定义中的 ≤ 换成<,那么这个函数就叫做严格凸函数。
2.(凸函数判断准则)
在这里插入图片描述
如果 f 是多元函数,x 是个向量,那么 f 是凸函数的条件变为Hf 是一个半正定矩阵。
3.凸函数重要性质: 琴生不等式
在这里插入图片描述

配合视频食用,风味更佳→《人工智能必备数学基础》

TESRA超算网络旗下T-CCP社区已上线,社区由高校AI社团及AI爱好者组成,社区包含学习视频、学习笔记、数据集模型、算法竞赛等内容,新用户注册还能免费领取算力训练,欢迎前来体验。立即边学边练>>>

在这里插入图片描述

这篇关于【数学基础篇】---详解极限与微分学与Jensen 不等式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845547

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input