动态规划-----最长公共子序列(及其衍生问题)

2024-03-25 16:12

本文主要是介绍动态规划-----最长公共子序列(及其衍生问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一.最长公共子序列的基本概念:

解决动态规划问题的一般思路(三大步骤):

二.最长公共子序列题目:

三.字符串的删除操作:

四.最小 ASCII 删除和:


一.最长公共子序列的基本概念:

首先需要科普一下,最长公共子序列(longest common sequence)和最长公共子串(longest common substring)不是一回事儿。什么是子序列呢?即一个给定的序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果。什么是子串呢?给定串中任意个连续的字符组成的子序列称为该串的子串。给一个图再解释一下:

最长公共子序列,顾名思义,就是求两个字符串中子序列的最长的公共部分,返回这个最大的长度,比如说输入 s1 = "zabcde", s2 = "acez",它俩的最长公共子序列是 lcs = "ace",长度为 3,所以算法返回 3。

🐻🐻🐻对于两个字符串求子序列的问题,都是用两个指针 i 和 j 分别在两个字符串上移动,大概率是动态规划思路

解决动态规划问题的一般思路(三大步骤):

动态规划,无非就是利用历史记录,来避免我们的重复计算。而这些历史记录,我们得需要一些变量来保存,一般是用一维数组或者二维数组来保存。下面我们先来讲下做动态规划题很重要的三个步骤:

  • 🧐 步骤一:定义dp数组元素的含义
  • 🧐步骤二:找出数组元素之间的关系式(也就是我们所熟知的状态转移方程)
  • 🧐第三步骤:找出初始值(base case)

接下来的题目我们会按照这三个步骤来解释说明

二.最长公共子序列题目:

计算最长公共子序列(Longest Common Subsequence,简称 LCS)是一道经典的动态规划题目,力扣第 1143 题「最长公共子序列open in new window」就是这个问题:

对应的函数签名如下:

  • 步骤一:按我上面的步骤说的,首先我们来定义 dp数组的含义,题目要我们求两个字符串的最长公共子序列,给出 对应dp[][] 数组的定义:dp[i][j] 表示串 s1[0..i] 和 s2[0..j] 最长公共子序列的长度
  • 步骤二:找到数组元素之间的关系式(也就是我们所熟知的状态转移方程)

这里咱不要看 s1 和 s2 两个字符串,而是要具体到每一个字符,思考每个字符该做什么:

①.如果我们只看 s1[i] 和 s2[j]如果 s1[i] == s2[j],说明这个字符一定在 lcs 中: 

根据dp数组定义可得此时状态转移方程为:dp[ i ][ j ] = 1 + dp[ i - 1 ][ j - 1 ]

②.如果s[i] != s2[j] 意味着,s1[i] 和 s2[j] 中至少有一个字符不在 lcs 中

因为是求最长的公共子序列,所以我们求出对应上述的三种情况的最大值即可,由于情况三被一和二所包(因为我们在求最大值嘛,情况三在计算 s1[i+1..] 和 s2[j+1..] 的 lcs 长度,这个长度肯定是小于等于情况二 s1[i..] 和 s2[j+1..] 中的 lcs 长度的,因为 s1[i+1..] 比 s1[i..] 短嘛,那从这里面算出的 lcs 当然也不可能更长嘛)所以可得:

根据dp数组定义可得此时状态转移方程为:dp[ i ][ j ] = Math.max( dp [ i - 1][ j ],dp[ i ] [ j - 1 ])

  •  步骤三:找出初始值(base case):这里当字符串为空时,没有最大公共子序列,对应的值为0。

我们以ABCB  和 BDCA 为例-----》填dp表:

按照上述的状态转移方程,我们可以将表填完整:

最后,完成上述过程后,动态规划完整代码:

class Solution {public int longestCommonSubsequence(String text1, String text2) {int m = text1.length(),n = text2.length();// base case: dp[0][..] = dp[..][0] = 0int dp[][] = new int[m + 1][n + 1];for(int i = 1;i <= m;i++){for(int j = 1;j <= n;j++){if(text1.charAt(i - 1) == text2.charAt(j - 1)){// text1[i-1] 和 text2[j-1] 必然在 lcs 中dp[i][j] = 1 + dp[i - 1][j -1];}else{// text1[i-1] 和 text2[j-1] 至少有一个不在 lcs 中dp[i][j] = Math.max(dp[i - 1][j],dp[i][j - 1]);}}}return dp[m][n];}
}

这里还有一种带备忘录的递归式解法,与上面的方法类似:

class Solution {// 备忘录,消除重叠子问题int[][] memo;/* 主函数 */public int longestCommonSubsequence(String s1, String s2) {int m = s1.length(), n = s2.length();// 备忘录值为 -1 代表未曾计算memo = new int[m][n];for (int[] row : memo) Arrays.fill(row, -1);// 计算 s1[0..] 和 s2[0..] 的 lcs 长度return dp(s1, 0, s2, 0);}// 定义:计算 s1[i..] 和 s2[j..] 的最长公共子序列长度int dp(String s1, int i, String s2, int j) {// base caseif (i == s1.length() || j == s2.length()) {return 0;}// 如果之前计算过,则直接返回备忘录中的答案if (memo[i][j] != -1) {return memo[i][j];}// 根据 s1[i] 和 s2[j] 的情况做选择if (s1.charAt(i) == s2.charAt(j)) {// s1[i] 和 s2[j] 必然在 lcs 中memo[i][j] = 1 + dp(s1, i + 1, s2, j + 1);} else {// s1[i] 和 s2[j] 至少有一个不在 lcs 中memo[i][j] = Math.max(dp(s1, i + 1, s2, j),dp(s1, i, s2, j + 1));}return memo[i][j];}
}

「最长公共子序列」问题基本都是要求返回一个最值即可,但是有时候面试官喜欢不按常理出牌,让你输出最长公共子序列:

我们可以通过构造出来的二维 dp 数组来得到最长公共子序列。如下图所示,从最后一个点开始往左上角的方向遍历 :

如果 s1[i] = s2[j],那么当前字符肯定在最长公共子序列中;否在我们就向左或者向上遍历,至于选择「向左」还是「向上」的方向,这就要和构造 dp 的时候联系起来。我们是挑了一个最大值,所以遍历的方向也是谁大就往谁的方向遍历 ,具体代码:

public static int lcs(String s1,String s2){//最长公共子序列框架int m = s1.length(),n = s2.length();int[][] dp = new int[m + 1][n + 1];for(int i = 1;i <= m;i++){for(int j = 1;j <=n;j++){if(s1.charAt(i - 1) == s2.charAt(j - 1)){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = Math.max(dp[i - 1][j],dp[i][j - 1]);}}}//打印最长公共子序列int i  = m,j = n;StringBuffer sb = new StringBuffer();while(i > 0 && j > 0){char c1 = s1.charAt(i - 1);char c2 = s2.charAt(j - 1);if(c1 == c2){sb.append(c1);// 向左上角遍历i--;j--;}else{// 向上if(dp[i - 1][j] > dp[i][j - 1]) i--;// 向左else j--;}}//最后将得到的字符串反转一下,就是我们要的答案了System.out.println(sb.reverse());return dp[m][n];}

有了上面的对最长公共子序列的一定了解,下面,来看两道和最长公共子序列相似的两道题目

三.字符串的删除操作:

这是力扣第 583 题「两个字符串的删除操作open in new window」,看下题目:

给定两个单词 s1 和 s2 ,返回使得 s1 和 s2 相同所需的最小步数。每步可以删除任意一个字符串中的一个字符。比如输入 s1 = "sea" s2 = "eat",算法返回 2,第一步将 "sea" 变为 "ea" ,第二步将 "eat" 变为 "ea"

函数签名如下:

题目让我们计算将两个字符串变得相同的最少删除次数,那我们可以思考一下,最后这两个字符串会被删成什么样子?删除的结果不就是它俩的最长公共子序列嘛!那么,要计算删除的次数,就可以通过最长公共子序列的长度推导出来:word1.len - LCS + word2.len - LCS 

与上面的解答类似:

class Solution {public int minDistance(String word1, String word2) {int m = word1.length(),n = word2.length();int longest = lcs(word1,word2);//推导出的公式return m - longest + n - longest;}int lcs(String s1,String s2){//基本最长公共子序列的框架不变int m = s1.length(),n = s2.length();int[][] dp = new int[m + 1][n + 1];for(int i = 1;i <= m;i++){for(int j = 1;j <= n;j++){if(s1.charAt(i - 1) == s2.charAt(j - 1)){dp[i][j] = 1 + dp[i - 1][j - 1];}else{dp[i][j] = Math.max(dp[i - 1][j],dp[i][j - 1]);}}}return dp[m][n];}
}

四.最小 ASCII 删除和:

这是力扣第 712 题「两个字符串的最小 ASCII 删除和open in new window」,题目和上一道题目类似,只不过上道题要求删除次数最小化,这道题要求删掉的字符 ASCII 码之和最小化。

对应函数签名:

其实这个题目的底层也是「最长公共子序列」,只是问法稍微变化了一点:

🧐🧐🧐「需要被删除的字符 = 原字符串 - 最长公共子序列」

  • 步骤一:结合这个题目我们把 dp[][] 数组的定义稍微改改:dp[i][j] 表示子串 s1[0..i] 和 s2[0..j] 最小 ASCII 删除和
  • 步骤二:状态转移方程:

①.如果 s1[i] = s2[j]dp[i][j] = dp[i - 1][j - 1] (不需要被删除)

②.如果 s1[i] != s2[j],dp[i][j] = Math.min(dp[i - 1][j] + s1[i], dp[i][j - 1] + s2[j])

  • 步骤三:初始化(base case):

如上图粉色标记出来的就是 base case,e 表示 e 的 ASCII 值

 至此,我们完成了其推导过程,动态规划解法代码:

class Solution {public int minimumDeleteSum(String s1, String s2) {int m = s1.length(),n = s2.length();//创建dp表int[][] dp = new int[m + 1][n + 1];//初始化dp表dp[0][0] = 0;for(int i = 1;i <= m;i++){dp[i][0] = dp[i - 1][0] + s1.charAt(i - 1);}for(int j = 1;j <= n;j++){dp[0][j] = dp[0][j - 1] + s2.charAt(j - 1);}//填表for(int i = 1;i <= m;i++){for(int j = 1;j <= n;j++){//相等情况if(s1.charAt(i - 1) == s2.charAt(j - 1)){dp[i][j] = dp[i - 1][j - 1];}else{//不相等情况dp[i][j] = Math.min(s1.charAt(i - 1) + dp[i - 1][j],s2.charAt(j - 1) + dp[i][j - 1]);}}}//返回值return dp[m][n];}
}

参考文章:《labuladong的算法笔记》,告别动态规划,连刷40道动规算法题,我总结了动规的套路-CSDN博客

结语: 写博客不仅仅是为了分享学习经历,同时这也有利于我巩固自己的知识点,总结该知识点,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进。同时也希望读者们不吝啬你们的点赞+收藏+关注,你们的鼓励是我创作的最大动力!

这篇关于动态规划-----最长公共子序列(及其衍生问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845536

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基