c 语言 三元搜索 - 迭代与递归(Ternary Search)

2024-03-25 12:20

本文主要是介绍c 语言 三元搜索 - 迭代与递归(Ternary Search),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        计算机系统使用不同的方法来查找特定数据。有多种搜索算法,每种算法更适合特定情况。例如,二分搜索将信息分为两部分,而三元搜索则执行相同的操作,但分为三个相等的部分。值得注意的是,三元搜索仅对排序数据有效。在本文中,我们将揭开三元搜索的秘密——它是如何工作的,为什么它在某些情况下更快。无论您是编码专家还是刚刚起步,都准备好快速进入三元搜索的世界!
什么是三元搜索?
        三元搜索是一种搜索算法,用于查找排序数组中目标值的位置。它的工作原理是将数组分为三部分,而不是像二分搜索那样分为两部分。基本思想是通过将目标值与将数组分为三个相等部分的两个点上的元素进行比较来缩小搜索空间。
        mid1 = l + (rl)/3 
        mid2 = r – (rl)/3 
三元搜索的工作原理:
        这个概念涉及将数组分成三个相等的段,并确定关键元素(正在寻找的元素)位于哪个段。它的工作原理与二分搜索类似,不同之处在于通过将数组分为三部分而不是两部分来降低时间复杂度。

以下是三元搜索工作的分步说明:
1、初始化:
        从排序数组开始。
        设置两个指针left和right,最初指向数组的第一个和最后一个元素。
2、划分数组:
        计算两个中点mid1和mid2,将当前搜索空间分为三个大致相等的部分:
                mid1 = 左 + (右 – 左) / 3
                mid2 = 右 – (右 – 左) / 3
        该数组现在有效地分为[left, mid1]、(mid1, mid2 ) 和[mid2, right]。
3、与目标比较: .
        如果target等于mid1或mid2处的元素,则查找成功,并返回索引
        如果目标小于mid1处的元素,则将右指针更新为mid1 – 1。
        如果目标大于mid2处的元素,则将左指针更新为mid2 + 1。
        如果目标位于mid1和mid2的元素之间,则将左指针更新为mid1 + 1,将右指针更新为mid2 – 1。
4、重复或结论:
        使用缩小的搜索空间重复该过程,直到找到目标或搜索空间变空。
        如果搜索空间为空并且未找到目标,则返回一个值,指示目标不存在于数组中。
插图: 

三元搜索的递归实现: 

// C program to illustrate
// recursive approach to ternary search
 
#include <stdio.h>
 
// Function to perform Ternary Search
int ternarySearch(int l, int r, int key, int ar[])
{
    if (r >= l) {
 
        // Find the mid1 and mid2
        int mid1 = l + (r - l) / 3;
        int mid2 = r - (r - l) / 3;
 
        // Check if key is present at any mid
        if (ar[mid1] == key) {
            return mid1;
        }
        if (ar[mid2] == key) {
            return mid2;
        }
 
        // Since key is not present at mid,
        // check in which region it is present
        // then repeat the Search operation
        // in that region
 
        if (key < ar[mid1]) {
 
            // The key lies in between l and mid1
            return ternarySearch(l, mid1 - 1, key, ar);
        }
        else if (key > ar[mid2]) {
 
            // The key lies in between mid2 and r
            return ternarySearch(mid2 + 1, r, key, ar);
        }
        else {
 
            // The key lies in between mid1 and mid2
            return ternarySearch(mid1 + 1, mid2 - 1, key, ar);
        }
    }
 
    // Key not found
    return -1;
}
 
// Driver code
int main()
{
    int l, r, p, key;
 
    // Get the array
    // Sort the array if not sorted
    int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 
    // Starting index
    l = 0;
 
    // end element index
    r = 9;
 
    // Checking for 5
 
    // Key to be searched in the array
    key = 5;
 
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
 
    // Print the result
    printf("Index of %d is %d\n", key, p);
 
    // Checking for 50
 
    // Key to be searched in the array
    key = 50;
 
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
 
    // Print the result
    printf("Index of %d is %d", key, p);

输出
5 的指数为 4 
50 的指数为 -1

时间复杂度: O(2 * log 3 n)
辅助空间: O(log 3 n)

三元搜索的迭代方法:

// C program to illustrate
// iterative approach to ternary search
 
#include <stdio.h>
 
// Function to perform Ternary Search
int ternarySearch(int l, int r, int key, int ar[])
 
{
    while (r >= l) {
 
        // Find the mid1 and mid2
        int mid1 = l + (r - l) / 3;
        int mid2 = r - (r - l) / 3;
 
        // Check if key is present at any mid
        if (ar[mid1] == key) {
            return mid1;
        }
        if (ar[mid2] == key) {
            return mid2;
        }
 
        // Since key is not present at mid,
        // check in which region it is present
        // then repeat the Search operation
        // in that region
 
        if (key < ar[mid1]) {
 
            // The key lies in between l and mid1
            r = mid1 - 1;
        }
        else if (key > ar[mid2]) {
 
            // The key lies in between mid2 and r
            l = mid2 + 1;
        }
        else {
 
            // The key lies in between mid1 and mid2
            l = mid1 + 1;
            r = mid2 - 1;
        }
    }
 
    // Key not found
    return -1;
}
 
// Driver code
int main()
{
    int l, r, p, key;
 
    // Get the array
    // Sort the array if not sorted
    int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 
    // Starting index
    l = 0;
 
    // end element index
    r = 9;
 
    // Checking for 5
 
    // Key to be searched in the array
    key = 5;
 
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
 
    // Print the result
    printf("Index of %d is %d\n", key, p);
 
    // Checking for 50
 
    // Key to be searched in the array
    key = 50;
 
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
 
    // Print the result
    printf("Index of %d is %d", key, p);

输出
5 的指数为 4 
50 的指数为 -1

时间复杂度: O(2 * log 3 n),其中 n 是数组的大小。
辅助空间: O(1)

三元搜索的复杂度分析:
时间复杂度:
        最坏情况:O(log 3 N)
        平均情况: θ(log 3 N)
        最好的情况:Ω(1)
        辅助空间: O(1)

二元搜索与三元搜索:
        二分查找的时间复杂度低于三目查找,因为三目查找的比较次数比二分查找多得多。二分搜索用于查找单调函数的最大值/最小值,而三元搜索用于查找单峰函数的最大值/最小值。
        注意:我们也可以对单调函数使用三元搜索,但时间复杂度会比二分搜索稍高。
优点:
        三元搜索可以找到单峰函数的最大值/最小值,而二元搜索不适用。
        三元搜索的时间复杂度为O(2 * log 3 n),比线性搜索更高效,与二分搜索相当。
        非常适合优化问题。
缺点:
        三元搜索仅适用于有序列表或数组,不能用于无序或非线性数据集。
        与二元搜索相比,三元搜索需要更多时间来查找单调函数的最大值/最小值。

何时使用三元搜索:
        当您有一个大型有序数组或列表并且需要查找特定值的位置时。
        当您需要找到函数的最大值或最小值时。
        当您需要在双调序列中找到双调点时。
        当您必须计算二次表达式时
概括:
        三元搜索是一种分治算法,用于查找给定数组或列表中特定值的位置。
        它的工作原理是将数组分为三部分,并对适当的部分递归地执行搜索操作,直到找到所需的元素。 
        该算法的时间复杂度为 O(2 * log 3 n),比线性搜索更有效,但比二分搜索等其他搜索算法不太常用。 
        需要注意的是,要使三元搜索正常工作,要搜索的数组必须进行排序。

这篇关于c 语言 三元搜索 - 迭代与递归(Ternary Search)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/844995

相关文章

Go 语言中的 Struct Tag 的用法详解

《Go语言中的StructTag的用法详解》在Go语言中,结构体字段标签(StructTag)是一种用于给字段添加元信息(metadata)的机制,常用于序列化(如JSON、XML)、ORM映... 目录一、结构体标签的基本语法二、json:"token"的具体含义三、常见的标签格式变体四、使用示例五、使用

Go语言使用slices包轻松实现排序功能

《Go语言使用slices包轻松实现排序功能》在Go语言开发中,对数据进行排序是常见的需求,Go1.18版本引入的slices包提供了简洁高效的排序解决方案,支持内置类型和用户自定义类型的排序操作,本... 目录一、内置类型排序:字符串与整数的应用1. 字符串切片排序2. 整数切片排序二、检查切片排序状态:

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

如何合理管控Java语言的异常

《如何合理管控Java语言的异常》:本文主要介绍如何合理管控Java语言的异常问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、Thorwable类3、Error4、Exception类4.1、检查异常4.2、运行时异常5、处理方式5.1. 捕获异常

C语言中的常见进制转换详解(从二进制到十六进制)

《C语言中的常见进制转换详解(从二进制到十六进制)》进制转换是计算机编程中的一个常见任务,特别是在处理低级别的数据操作时,C语言作为一门底层编程语言,在进制转换方面提供了灵活的操作方式,今天,我们将深... 目录1、进制基础2、C语言中的进制转换2.1 从十进制转换为其他进制十进制转二进制十进制转八进制十进

$在R语言中的作用示例小结

《$在R语言中的作用示例小结》在R语言中,$是一个非常重要的操作符,主要用于访问对象的成员或组件,它的用途非常广泛,不仅限于数据框(dataframe),还可以用于列表(list)、环境(enviro... 目录1. 访问数据框(data frame)中的列2. 访问列表(list)中的元素3. 访问jav

C++迭代器失效的避坑指南

《C++迭代器失效的避坑指南》在C++中,迭代器(iterator)是一种类似指针的对象,用于遍历STL容器(如vector、list、map等),迭代器失效是指在对容器进行某些操作后... 目录1. 什么是迭代器失效?2. 哪些操作会导致迭代器失效?2.1 vector 的插入操作(push_back,

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

mysql递归查询语法WITH RECURSIVE的使用

《mysql递归查询语法WITHRECURSIVE的使用》本文主要介绍了mysql递归查询语法WITHRECURSIVE的使用,WITHRECURSIVE用于执行递归查询,特别适合处理层级结构或递归... 目录基本语法结构:关键部分解析:递归查询的工作流程:示例:员工与经理的层级关系解释:示例:树形结构的数

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合