c 语言 三元搜索 - 迭代与递归(Ternary Search)

2024-03-25 12:20

本文主要是介绍c 语言 三元搜索 - 迭代与递归(Ternary Search),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        计算机系统使用不同的方法来查找特定数据。有多种搜索算法,每种算法更适合特定情况。例如,二分搜索将信息分为两部分,而三元搜索则执行相同的操作,但分为三个相等的部分。值得注意的是,三元搜索仅对排序数据有效。在本文中,我们将揭开三元搜索的秘密——它是如何工作的,为什么它在某些情况下更快。无论您是编码专家还是刚刚起步,都准备好快速进入三元搜索的世界!
什么是三元搜索?
        三元搜索是一种搜索算法,用于查找排序数组中目标值的位置。它的工作原理是将数组分为三部分,而不是像二分搜索那样分为两部分。基本思想是通过将目标值与将数组分为三个相等部分的两个点上的元素进行比较来缩小搜索空间。
        mid1 = l + (rl)/3 
        mid2 = r – (rl)/3 
三元搜索的工作原理:
        这个概念涉及将数组分成三个相等的段,并确定关键元素(正在寻找的元素)位于哪个段。它的工作原理与二分搜索类似,不同之处在于通过将数组分为三部分而不是两部分来降低时间复杂度。

以下是三元搜索工作的分步说明:
1、初始化:
        从排序数组开始。
        设置两个指针left和right,最初指向数组的第一个和最后一个元素。
2、划分数组:
        计算两个中点mid1和mid2,将当前搜索空间分为三个大致相等的部分:
                mid1 = 左 + (右 – 左) / 3
                mid2 = 右 – (右 – 左) / 3
        该数组现在有效地分为[left, mid1]、(mid1, mid2 ) 和[mid2, right]。
3、与目标比较: .
        如果target等于mid1或mid2处的元素,则查找成功,并返回索引
        如果目标小于mid1处的元素,则将右指针更新为mid1 – 1。
        如果目标大于mid2处的元素,则将左指针更新为mid2 + 1。
        如果目标位于mid1和mid2的元素之间,则将左指针更新为mid1 + 1,将右指针更新为mid2 – 1。
4、重复或结论:
        使用缩小的搜索空间重复该过程,直到找到目标或搜索空间变空。
        如果搜索空间为空并且未找到目标,则返回一个值,指示目标不存在于数组中。
插图: 

三元搜索的递归实现: 

// C program to illustrate
// recursive approach to ternary search
 
#include <stdio.h>
 
// Function to perform Ternary Search
int ternarySearch(int l, int r, int key, int ar[])
{
    if (r >= l) {
 
        // Find the mid1 and mid2
        int mid1 = l + (r - l) / 3;
        int mid2 = r - (r - l) / 3;
 
        // Check if key is present at any mid
        if (ar[mid1] == key) {
            return mid1;
        }
        if (ar[mid2] == key) {
            return mid2;
        }
 
        // Since key is not present at mid,
        // check in which region it is present
        // then repeat the Search operation
        // in that region
 
        if (key < ar[mid1]) {
 
            // The key lies in between l and mid1
            return ternarySearch(l, mid1 - 1, key, ar);
        }
        else if (key > ar[mid2]) {
 
            // The key lies in between mid2 and r
            return ternarySearch(mid2 + 1, r, key, ar);
        }
        else {
 
            // The key lies in between mid1 and mid2
            return ternarySearch(mid1 + 1, mid2 - 1, key, ar);
        }
    }
 
    // Key not found
    return -1;
}
 
// Driver code
int main()
{
    int l, r, p, key;
 
    // Get the array
    // Sort the array if not sorted
    int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 
    // Starting index
    l = 0;
 
    // end element index
    r = 9;
 
    // Checking for 5
 
    // Key to be searched in the array
    key = 5;
 
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
 
    // Print the result
    printf("Index of %d is %d\n", key, p);
 
    // Checking for 50
 
    // Key to be searched in the array
    key = 50;
 
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
 
    // Print the result
    printf("Index of %d is %d", key, p);

输出
5 的指数为 4 
50 的指数为 -1

时间复杂度: O(2 * log 3 n)
辅助空间: O(log 3 n)

三元搜索的迭代方法:

// C program to illustrate
// iterative approach to ternary search
 
#include <stdio.h>
 
// Function to perform Ternary Search
int ternarySearch(int l, int r, int key, int ar[])
 
{
    while (r >= l) {
 
        // Find the mid1 and mid2
        int mid1 = l + (r - l) / 3;
        int mid2 = r - (r - l) / 3;
 
        // Check if key is present at any mid
        if (ar[mid1] == key) {
            return mid1;
        }
        if (ar[mid2] == key) {
            return mid2;
        }
 
        // Since key is not present at mid,
        // check in which region it is present
        // then repeat the Search operation
        // in that region
 
        if (key < ar[mid1]) {
 
            // The key lies in between l and mid1
            r = mid1 - 1;
        }
        else if (key > ar[mid2]) {
 
            // The key lies in between mid2 and r
            l = mid2 + 1;
        }
        else {
 
            // The key lies in between mid1 and mid2
            l = mid1 + 1;
            r = mid2 - 1;
        }
    }
 
    // Key not found
    return -1;
}
 
// Driver code
int main()
{
    int l, r, p, key;
 
    // Get the array
    // Sort the array if not sorted
    int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 
    // Starting index
    l = 0;
 
    // end element index
    r = 9;
 
    // Checking for 5
 
    // Key to be searched in the array
    key = 5;
 
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
 
    // Print the result
    printf("Index of %d is %d\n", key, p);
 
    // Checking for 50
 
    // Key to be searched in the array
    key = 50;
 
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
 
    // Print the result
    printf("Index of %d is %d", key, p);

输出
5 的指数为 4 
50 的指数为 -1

时间复杂度: O(2 * log 3 n),其中 n 是数组的大小。
辅助空间: O(1)

三元搜索的复杂度分析:
时间复杂度:
        最坏情况:O(log 3 N)
        平均情况: θ(log 3 N)
        最好的情况:Ω(1)
        辅助空间: O(1)

二元搜索与三元搜索:
        二分查找的时间复杂度低于三目查找,因为三目查找的比较次数比二分查找多得多。二分搜索用于查找单调函数的最大值/最小值,而三元搜索用于查找单峰函数的最大值/最小值。
        注意:我们也可以对单调函数使用三元搜索,但时间复杂度会比二分搜索稍高。
优点:
        三元搜索可以找到单峰函数的最大值/最小值,而二元搜索不适用。
        三元搜索的时间复杂度为O(2 * log 3 n),比线性搜索更高效,与二分搜索相当。
        非常适合优化问题。
缺点:
        三元搜索仅适用于有序列表或数组,不能用于无序或非线性数据集。
        与二元搜索相比,三元搜索需要更多时间来查找单调函数的最大值/最小值。

何时使用三元搜索:
        当您有一个大型有序数组或列表并且需要查找特定值的位置时。
        当您需要找到函数的最大值或最小值时。
        当您需要在双调序列中找到双调点时。
        当您必须计算二次表达式时
概括:
        三元搜索是一种分治算法,用于查找给定数组或列表中特定值的位置。
        它的工作原理是将数组分为三部分,并对适当的部分递归地执行搜索操作,直到找到所需的元素。 
        该算法的时间复杂度为 O(2 * log 3 n),比线性搜索更有效,但比二分搜索等其他搜索算法不太常用。 
        需要注意的是,要使三元搜索正常工作,要搜索的数组必须进行排序。

这篇关于c 语言 三元搜索 - 迭代与递归(Ternary Search)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844995

相关文章

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)