Kruskal最小生成树【详细解释+动图图解】【sort中的cmp函数】 【例题:洛谷P3366 【模板】最小生成树】

本文主要是介绍Kruskal最小生成树【详细解释+动图图解】【sort中的cmp函数】 【例题:洛谷P3366 【模板】最小生成树】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Kruskal算法简介
    • Kruskal算法前置知识
      • sort 中的cmp函数
  • 算法思考
    • 样例详细示范与解释
    • kruskal模版code↓
  • 例题:洛谷P3366 【模板】最小生成树code↓
  • 完结撒花QWQ

Kruskal算法简介

K r u s k a l Kruskal Kruskal 是基于贪心算法 M S T MST MST 算法,核心思想为以边为中心查找最小生成树,时间复杂度 O ( m l o g 2 m ) O(mlog_{2}m) O(mlog2m),其中的 m m m 为边数

具体算法可分为两个步骤

1.以边权为优先级来进行排序

2.使用并查集查找连通性,如果不连通,则加边,加答案


Kruskal算法前置知识

1.对于 v e c t o r vector vector 的容器排序算法(使用 s o r t sort sort 即可)

sort(T.begin(),T.end(),cmp);//这是vector的排序方法

解释: T . b e g i n ( ) T.begin() T.begin() v e c t o r vector vector 的起始部分, T . e n d ( ) T.end() T.end() v e c t o r vector vector 的结束部分, T T T v e c t o r vector vector 的容器名

sort 中的cmp函数

c m p cmp cmp s o r t sort sort 重构函数,需要自己定义,这个函数的类型 b o o l bool bool内部变量的类型便是需要排序的容器的类型

cmp模版code如下↓

T name;
bool cmp(T x,T y){return x op y}
sort(name(first),name(last),cmp)

T T T容器类型 n a m e name name容器名字 n a m e ( f i r s t ) name(first) name(first) 代表容器的第一位 n a m e ( l a s t ) name(last) name(last) 表示容器的最后一位


2.使用结构体的构造来赋值

Edge(int a,int b,int c):u(a),v(b),w(c){};

上述构造函数的代码的意思等同于↓:

Edge(int a,int b,int c){u=a,v=b,w=c;}

在结构体里加边的操作也就为:T.push_back(Edge(u,v,w));


3.容器 v e c t o r vector vector 的定义

我们需要用容器来管理结构体

也就是将结构体给定义在容器里

vector<Node> T;//其中T为容器名,Node为结构体名

定义code总结↓:

struct Node{int u,v,w;//定义类型Edge(int a,int b,int c):u(a),v(b),w(c){};//使用构造
};
bool (Node x,Node y){return x.w<y.w}//具体使用vector里的哪一个定义排序的函数
vector<Node> T;//使用容器来管理结构体
sort(T.begin(),T.end(),cmp)//其中T为容器名

算法思考

我们先给出一个题目来进行思考↓:

x x x 市共有 n n n 个岛屿, m m m 种修桥的方案由于 x x x 市的市长是一个黑心市长,所以他想要选择一种方案使得总共修桥的钱最少
每年他可以修一座桥,问:需要几年才能使得所有的岛屿之间都可以互相同行,最少修桥的钱为多少?

我们可以知道:修桥的钱数就是边权,岛屿的名字就是点的编号

第一个问题很好解答,使得所有点之间都可以连通的最少边数 N − 1 N-1 N1 条边

第二个问题我们就需要进行 K r u s k a l Kruskal Kruskal 进行求最小生成树

输入格式为
1 1 1 行,两个整数 n n n , m m m
2 2 2 ~ n + 1 n+1 n+1 行,每行三个整数 u u u , v v v , w w w ,表示所连接的两点及其边权

我们先给出一组样例↓

4 6
1 2 11
2 3 13
3 4 9
4 1 21
1 3 23
4 2 20

样例解释如图示↓
在这里插入图片描述

样例详细示范与解释

因为我们是需要" 花最少的钱,办最多的事 ",所以我们需要先以边的权值为优先级进行排序,结果为↓

3 4 9
1 2 11
2 3 13
4 2 20
4 1 21
1 3 23

那么我们就可以开始进行判断了,每一次重复的过程为:查找两个点是否连通,如果不连通,则加边

int x=find(wei[i].u),y=find(wei[i].v);//查找两个点的祖先if(x!=y){//如果祖先相同,则他们连通,在同一个集合内f[x]=y;//将两条边连在一起ans+=wei[i].w;//将它的权值加在最终答案里cnt++;//已经连接的边数+1}

解释:因为我们最开始已经排过序了,所以如果不连通,那么这条边一定是连接这两个点的最小代价

最后,如果两个点不连通,直接加边和答案,如果边数已经满足最少边数 N − 1 N-1 N1 条,则返回答案

return cnt==n-1?ans:-1;//如果边数是n-1条则返回答案,否则没有答案,无法连接所有边

如何使用并查集查找两个点的连通性,可见我的另一篇博文:并查集【模版】& 路径压缩优化

动图视频如下:

kruskal模版code↓

int kruskal(int n,int m,vector<Edge> &wei){sort(wei.begin(),wei.end(),cmp);int ans=0,cnt=0;for(int i=0;i<m;i++){int x=find(wei[i].u),y=find(wei[i].v);if(x!=y){f[x]=y;ans+=wei[i].w;cnt++;}}return cnt==n-1?ans:-1;
}

例题:洛谷P3366 【模板】最小生成树code↓

#include <bits/stdc++.h>
using namespace std;
const int maxn=2e5+7;
struct Edge{int u,v,w;Edge(int a,int b,int c):u(a),v(b),w(c){};
};
int f[maxn]={},n,m;
bool cmp(Edge x,Edge y){return x.w<y.w;
}
int find(int x){return f[x]==x?x:f[x]=find(f[x]);} 
vector<Edge> wei;
int kruskal(int n,int m,vector<Edge> &wei){sort(wei.begin(),wei.end(),cmp);int ans=0,cnt=0;for(int i=0;i<m;i++){int x=find(wei[i].u),y=find(wei[i].v);if(x!=y){f[x]=y;ans+=wei[i].w;cnt++;}}return cnt==n-1?ans:-1;
}
int init(){for(int i=1;i<=n;i++) f[i]=i;return 0;
}
int main(){cin>>n>>m;for(int i=1;i<=n;i++) f[i]=i;for(int i=1;i<=m;i++){int u,v,w;cin>>u>>v>>w;wei.push_back(Edge(u,v,w));//因为是无向图,所以需要反过来再加一次边wei.push_back(Edge(v,u,w));}int ans=kruskal(n,2*m,wei);//因为是无向图,所以边数是原边数的两倍if(ans==-1) cout<<"orz";else cout<<ans;return 0;
}

这么一点代码当然是可以 A C AC AC

在这里插入图片描述

完结撒花QWQ

这篇关于Kruskal最小生成树【详细解释+动图图解】【sort中的cmp函数】 【例题:洛谷P3366 【模板】最小生成树】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844723

相关文章

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

如何在Java Spring实现异步执行(详细篇)

《如何在JavaSpring实现异步执行(详细篇)》Spring框架通过@Async、Executor等实现异步执行,提升系统性能与响应速度,支持自定义线程池管理并发,本文给大家介绍如何在Sprin... 目录前言1. 使用 @Async 实现异步执行1.1 启用异步执行支持1.2 创建异步方法1.3 调用

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

SpringBoot改造MCP服务器的详细说明(StreamableHTTP 类型)

《SpringBoot改造MCP服务器的详细说明(StreamableHTTP类型)》本文介绍了SpringBoot如何实现MCPStreamableHTTP服务器,并且使用CherryStudio... 目录SpringBoot改造MCP服务器(StreamableHTTP)1 项目说明2 使用说明2.1