在没有康托尔对角化方法的情况下证明实数的不可数性

2024-03-25 08:20

本文主要是介绍在没有康托尔对角化方法的情况下证明实数的不可数性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

乔治·康托尔 |图片来源: 维基百科

一、说明

        对于那些对数学感兴趣的人来说,无穷大实际上可以有不同的大小,这可能是一个众所周知的事实。事实上,最著名的例子是所有实数的集合比所有自然数的集合“大”。你可能知道,这实际上有一个非常优雅的证明,称为康托尔对角线方法,由乔治·康托尔在1891年提出。如果您不知道这一点,我绝对建议您研究一下,因为我认为该方法非常聪明,但同时任何人都很容易理解。

        然而,在这篇文章中,呈述通过一种稍微严格的方法来证明实数是不可数的,这种方法涉及集合的概念。虽然我不会声称这是完全严格的,但我确实发现这仍然是解决这个问题的一种非常有趣的方法。     

        此外,在这篇文章中,我将假设对集合是什么以及集合之间的交集意味着什么有一个基本的了解。

二、嵌套间隔属性

        在继续之前,我想介绍一个重要的定理,称为嵌套区间属性,它将用于证明实数是不可数的。嵌套间隔属性声明如下:

对于每个 n ∈ N,假设我们给定一个区间 In = [an, bn] = {x ∈ R : 一个< x < bn}。 还假设每个间隔包含下一个(即 In ⊆...⊆ I₂⊆ I₁)。然后,这个嵌套的区间序列将有一个非空的交集。

        在数学上,我们可以将结果表示如下:

        为了更轻松地解释嵌套间隔属性,请考虑实数上的任何间隔,并将其设为 I₁。现在考虑在该区间内新建一个区间,并将其设为 I₂。现在一遍又一遍地重复这个过程。因此,您将获得如下所示的嵌套间隔:

        嵌套间隔 |图片来源:维基百科

        嵌套间隔属性声称所有这些间隔的交集都是非空的,我们能够找到一些 x ∈ I₁I₂⋂...⋂无论n有多大。虽然可以通过引入其他公理和概念来提供嵌套间隔属性的证明,但为了这篇文章,我会认为这是理所当然的。

三、实数的不可数性

        配备嵌套间隔属性,我们可以尝试证明实数确实是不可数的。首先,让我们首先考虑“可数”的真正含义。

        如果集合 A 与自然数 N 有 1-1 的对应关系,则认为它是可数的。简单来说,如果 A 与 N 有 1-1 的对应关系,这意味着我们可以找到一个函数 : N → A,使得 N 中的每个元素正好对应于 A 中的一个元素反之亦然(稍微具体的解释是 f 是 1-1 和 onto)。另一种说明方式是,中的每个元素都可以使用自然数进行编号

        了解了集合可数的含义后,我们现在可以开始证明了。对于这个证明,我们将使用矛盾证明的方法,首先假设实数实际上是可数的。这意味着 N 和 R 之间实际上存在 1-1 的对应关系,由某个函数 : →R 给出。换句话说,我们能够枚举实数,我们可以通过让 xn = fn) 来表示实数,为 R 给出以下表达式:

        因此,我们使用自然数枚举了 R 的每个元素。这就是嵌套间隔属性发挥作用的地方。

        首先,让 I₁ 是 R 上不包含 x₁ 的闭区间。在此之后,我们将构造剩余的嵌套间隔 In,它们具有以下属性:

        要解释这意味着什么,请考虑 I₂。由于第一个属性,I₂ 是 I 的子集,由于第二个属性,x₂ 不在 I 中。 对 I₃I₄ 等重复此操作。请注意,应该直观地理解为什么这样的区间序列是可能的,因为给定某个区间,只需简单地避免该数字,就不难创建嵌套在该区间中不包含特定实数的另一个区间。

        现在,考虑我们刚刚构建的所有这些区间之间的交集。如果我们在上面的枚举实数列表中包含一些实数 xm,那么我们知道它不会是第 m 个区间 Im 的一个元素,因为这些区间的上述属性。因此,我们可以得出以下结论:

        但是,嵌套间隔属性告诉我们,这些嵌套间隔的交集必须是非空的,并且我们能够找到一些 x,例如:

        但是通过这些区间的性质,我们知道这个新发现的x不能出现在我们在假设中创建的实数枚举列表中。因此,我们有一个明显的矛盾,并且可以得出结论,我们关于R是可数的假设一定是假的,这表明R确实是不可数的。

        虽然这种使用区间的相当抽象的方法肯定不如康托尔的对角线化方法直观,但我认为看到一种更严格的方法涉及从实际分析中理解集合和函数是相当有启发性的。但是,这个证明肯定仍然存在缺陷,我没有完全解释的事情,所以如果你有兴趣,我肯定会建议你多读一读。我使用的这个特殊证明改编自雅培的理解分析(下面引用),这是我推荐阅读的一本很棒的教科书,其中还包括我跳过的嵌套间隔属性的证明。感谢您的阅读。

四、引用

雅培,S.(2016)。了解分析。斯普林格。

坂本健成

这篇关于在没有康托尔对角化方法的情况下证明实数的不可数性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844391

相关文章

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET