双线性二次插值原理解析

2024-03-25 00:48

本文主要是介绍双线性二次插值原理解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  在介绍双线性插值前,我们先介绍一下拉格朗日插值多项式。

  拉格朗日插值法:

在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现[1],不久后(1783年)由莱昂哈德·欧拉再次发现。1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起[2]

对于给定的若n+1个点(x_{0},y_{0}),(x_{1},y_{1}),\ldots ,(x_{n},y_{n}),对应于它们的次数不超过n的拉格朗日多项式\scriptstyle L只有一个。如果计入次数更高的多项式,则有无穷个,因为所有与\scriptstyle L相差\lambda (x-x_{0})(x-x_{1})\ldots (x-x_{n})的多项式都满足条件。例子:

已知平面上四个点: (-9, 5), (-4, 2)(-1, -2)(7, 9),拉格朗日多项式: Lx(黑色)穿过所有点。而每个基本多项式:

 

以及 各穿过对应的一点,并在其它的三个点的 x值上取零。

定义

对某个多项式函数,已知有给定的k + 1个取值点:

(x_{0},y_{0}),\ldots ,(x_{k},y_{k})

其中x_{j}对应着自变量的位置,而y_{j}对应着函数在这个位置的取值。

假设任意两个不同的xj都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:

L(x):=\sum _{​{j=0}}^{​{k}}y_{j}\ell _{j}(x)

其中每个\ell _{j}(x)拉格朗日基本多项式(或称插值基函数),其表达式为:

\ell _{j}(x):=\prod _{​{i=0,\,i\neq j}}^{​{k}}{\frac  {x-x_{i}}{x_{j}-x_{i}}}={\frac  {(x-x_{0})}{(x_{j}-x_{0})}}\cdots {\frac  {(x-x_{​{j-1}})}{(x_{j}-x_{​{j-1}})}}{\frac  {(x-x_{​{j+1}})}{(x_{j}-x_{​{j+1}})}}\cdots {\frac  {(x-x_{​{k}})}{(x_{j}-x_{​{k}})}}. [3]

拉格朗日基本多项式\ell _{j}(x)的特点是在x_{j}上取值为1,在其它的点x_{i},\,i\neq j上取值为0

范例

假设有某个二次多项式函数f,已知它在三个点上的取值为:

  • f(4)=10
  • f(5)=5.25
  • f(6)=1

要求f(18)的值。

首先写出每个拉格朗日基本多项式:

\ell _{0}(x)={\frac  {(x-5)(x-6)}{(4-5)(4-6)}}
\ell _{1}(x)={\frac  {(x-4)(x-6)}{(5-4)(5-6)}}
\ell _{2}(x)={\frac  {(x-4)(x-5)}{(6-4)(6-5)}}

然后应用拉格朗日插值法,就可以得到p的表达式(p为函数f的插值函数):

p(x)=f(4)\ell _{0}(x)+f(5)\ell _{1}(x)+f(6)\ell _{2}(x)
.\,\,\,\,\,\,\,\,\,\,=10\cdot {\frac  {(x-5)(x-6)}{(4-5)(4-6)}}+5.25\cdot {\frac  {(x-4)(x-6)}{(5-4)(5-6)}}+1\cdot {\frac  {(x-4)(x-5)}{(6-4)(6-5)}}
.\,\,\,\,\,\,\,\,\,\,={\frac  {1}{4}}(x^{2}-28x+136)

此时代入数值\ 18就可以求出所需之值:\ f(18)=p(18)=-11

证明

存在性

对于给定的k+1个点:(x_{0},y_{0}),\ldots ,(x_{k},y_{k}),拉格朗日插值法的思路是找到一个在一点x_{j}取值为1,而在其他点取值都是0的多项式\ell _{j}(x)。这样,多项式y_{j}\ell _{j}(x)在点x_{j}取值为y_{j},而在其他点取值都是0。而多项式L(x):=\sum _{​{j=0}}^{​{k}}y_{j}\ell _{j}(x)就可以满足

L(x_{j})=\sum _{​{i=0}}^{​{k}}y_{i}\ell _{i}(x_{j})=0+0+\cdots +y_{j}+\cdots +0=y_{j}

在其它点取值为0的多项式容易找到,例如:

(x-x_{0})\cdots (x-x_{​{j-1}})(x-x_{​{j+1}})\cdots (x-x_{​{k}})

它在点x_{j}取值为:(x_{j}-x_{0})\cdots (x_{j}-x_{​{j-1}})(x_{j}-x_{​{j+1}})\cdots (x_{j}-x_{​{k}})。由于已经假定x_{i}两两互不相同,因此上面的取值不等于0。于是,将多项式除以这个取值,就得到一个满足“在x_{j}取值为1,而在其他点取值都是0的多项式”:

\ell _{j}(x):=\prod _{​{i=0,\,i\neq j}}^{​{k}}{\frac  {x-x_{i}}{x_{j}-x_{i}}}={\frac  {(x-x_{0})}{(x_{j}-x_{0})}}\cdots {\frac  {(x-x_{​{j-1}})}{(x_{j}-x_{​{j-1}})}}{\frac  {(x-x_{​{j+1}})}{(x_{j}-x_{​{j+1}})}}\cdots {\frac  {(x-x_{​{k}})}{(x_{j}-x_{​{k}})}}

这就是拉格朗日基本多项式。


我们的方法是这样的,根据水平方向上的双线性二次插值,由f(I,j)和f(i+1,j)求取f(x,j),由

f(I,j+1)和f(i+1,j+1)求取f(x,j+1),然后再根据这两点的二次插值求取f(x,y)。

  根据前面的例题,我们可以很容易的求取各点插值如下:

                        f(x,j)=(i+1-x)f(I,j)+(x-i)f(i+1,j)               公式1-(4)

                      f(x,j+1)=(i+1-x)f(I,j+1)+(x-i)f(i+1,j+1)           公式1-(5)

                       f(x,y)=(i+1-y)f(x,j)+(y-j)f(x,j+1)               公式1-(6)

  以上三式综合可以得到:

  f(x,y)=(j+1-y)(i+1-x)f(I,j)+(j+1-y)(x-i)f(i+1,j)+(y-j)(i+1-x)f(I,j+1)+(y-j)(x-i)f(i+1,j+1)     公式1-(7)

  我们令x=i+p,y=j+q得:

  f(i+p,j+q)=(1-q)(1-p)f(I,j)+p(1-q)f(i+1,j)+q(1-p)f(I,j+1)+pqf(i+1,j+1)                公式1-(8)

  上式即为数字图像处理中的双线性二次插值公式。

参考博客:https://www.cnblogs.com/ECJTUACM-873284962/p/6833391.html

                   http://blog.csdn.net/trent1985/article/details/45150677

这篇关于双线性二次插值原理解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843352

相关文章

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

CSS place-items: center解析与用法详解

《CSSplace-items:center解析与用法详解》place-items:center;是一个强大的CSS简写属性,用于同时控制网格(Grid)和弹性盒(Flexbox)... place-items: center; 是一个强大的 css 简写属性,用于同时控制 网格(Grid) 和 弹性盒(F

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

全面解析HTML5中Checkbox标签

《全面解析HTML5中Checkbox标签》Checkbox是HTML5中非常重要的表单元素之一,通过合理使用其属性和样式自定义方法,可以为用户提供丰富多样的交互体验,这篇文章给大家介绍HTML5中C... 在html5中,Checkbox(复选框)是一种常用的表单元素,允许用户在一组选项中选择多个项目。本

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir