Median of an Array(贪心策略,编程技巧)

2024-03-24 18:36

本文主要是介绍Median of an Array(贪心策略,编程技巧),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 题目描述
    • 输入格式
    • 输出格式
    • 样例输入
    • 样例输出
    • 提交链接
    • 提示
  • 解析
  • 参考代码

题目描述

给你一个由 n n n 个整数组成的数组 a a a

数组 q 1 , q 2 , … , q k q_1,q_2,…,q_k q1,q2,,qk 的中位数是 p ⌈ k 2 ⌉ p⌈\frac {k}{2}⌉ p2k ,其中 p p p 是按非递减顺序排列的数组 q q q

例如,数组 [ 9 , 5 , 1 , 2 , 6 ] [9,5,1,2,6] [9,5,1,2,6] 的中位数是 5 5 5 ,在排序数组 [ 1 , 2 , 5 , 6 , 9 ] [1,2,5,6,9] [1,2,5,6,9] 中,索引 ⌈ 5 2 ⌉ = 3 ⌈\frac {5}{2}⌉=3 25=3 处的数字是 5 5 5 ;数组 [ 9 , 2 , 8 , 3 ] [9,2,8,3] [9,2,8,3] 的中位数是 3 3 3 ,在排序数组 [ 2 , 3 , 8 , 9 ] [2,3,8,9] [2,3,8,9] 中,索引 ⌈ 4 2 ⌉ = 2 ⌈\frac {4}{2}⌉=2 24=2 处的数字是 3 3 3

您可以选择一个整数 i ( 1 ≤ i ≤ n ) i( 1≤i≤n) i(1in),并在一次操作中将 a i a_i ai 增加 1 1 1

你的任务是找出增加数组中位数所需的最少运算次数。

注意数组 a a a 不一定包含不同的数。

输入格式

第一行包含一个整数 n ( 1 ≤ n ≤ 1 0 5 ) n(1 \leq n \leq 10^5) n(1n105)- 数组 a a a 的长度。

第二行包含 n n n 个整数 a 1 , a 2 , . . . , a n ( 1 ≤ a i ≤ 1 0 9 ) a_1,a_2,...,a_n(1 \leq a_i \leq 10^9) a1,a2,...,an(1ai109) - 数组 a a a

输出格式

输出一个整数 - 增加数组中位数所需的最少操作数。

样例输入

3
2 2 8

样例输出

1

提交链接

https://hydro.ac/d/lp728/p/12

提示

样例解释 1 1 1:
对第一个数字进行一次运算,得到数组 [ 3 , 2 , 8 ] [3,2,8] [3,2,8],这个数组的中位数是 3 3 3,因为它是非递减排序数组 [ 2 , 3 , 8 ] [2,3,8] [2,3,8] 中索引 ⌈ 3 2 ⌉ = 2 ⌈\frac {3}{2}⌉=2 23=2 处的数字。原数组 [ 2 , 2 , 8 ] [2,2,8] [2,2,8] 的中位数是 2 2 2,因为它是非递减排序数组 [ 2 , 2 , 8 ] [2,2,8] [2,2,8] 中索引 ⌈ 3 2 ⌉ = 2 ⌈\frac {3}{2}⌉=2 23=2 处的数字。因此,只需一次操作,中位数就增加了。 ( 3 > 2 ) (3>2) (3>2)

解析

先对数组进行排序,找出数组中的中位数,即数字 a ⌈ n 2 ⌉ a_{⌈\frac {n}{2}⌉} a2n,让它等于 x x x 。为了使中位数增加,即至少变为 x + 1 x+1 x+1,数组中必须至少有 n − ⌈ n 2 ⌉ + 1 n-⌈\frac {n}{2}⌉+1 n2n+1 个数字大于或等于 x + 1 x+1 x+1。统计 x x x 的个数即可。

count 函数:统计区间内某个数的个数。

参考代码

#include<bits/stdc++.h>
using namespace std;
int t , n;
int main()
{int n;cin >> n;vector<int> v(n);   for(int i = 0; i < n; i++)cin >> v[i];sort(v.begin() , v.end());  //排序 int id = (n + 1) / 2 - 1;  //中位数的下标(下标从0输入) int num = count(v.begin() + id , v.end() , v[id]);  //计算v[id]的个数 cout << num << endl;return 0;
}

这篇关于Median of an Array(贪心策略,编程技巧)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/842422

相关文章

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

AOP编程的基本概念与idea编辑器的配合体验过程

《AOP编程的基本概念与idea编辑器的配合体验过程》文章简要介绍了AOP基础概念,包括Before/Around通知、PointCut切入点、Advice通知体、JoinPoint连接点等,说明它们... 目录BeforeAroundAdvise — 通知PointCut — 切入点Acpect — 切面

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

C#异步编程ConfigureAwait的使用小结

《C#异步编程ConfigureAwait的使用小结》本文介绍了异步编程在GUI和服务器端应用的优势,详细的介绍了async和await的关键作用,通过实例解析了在UI线程正确使用await.Conf... 异步编程是并发的一种形式,它有两大好处:对于面向终端用户的GUI程序,提高了响应能力对于服务器端应

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析