【漫漫科研路\CC++】CPLEX解SOCP问题

2024-03-24 14:58
文章标签 c++ 问题 科研 cplex 漫漫 socp

本文主要是介绍【漫漫科研路\CC++】CPLEX解SOCP问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

IBM CPLEX可以解SOCP问题,但是需要先将这个SOCP问题化为指定的格式。本文首先介绍SOCP问题,然后举例介绍如何将SOCP问题转化为CPLEX认可的输入格式并求解。

SOCP的介绍

关于SOCP问题的介绍,可以参考Boyd等人写的Convex Optimization 或者是维基百科的SOCP词条 。这里摘录Convex Optimization一书中关于SOCP的定义:

在这里插入图片描述

CPLEX求解SOCP问题

使用CPLEX求解SOCP问题,一般需要将问题转化为CPLEX可以识别的格式。CPLEX的例子ilosocpex1(位于安装目录的examples文件夹内,例如:C:\Program Files\IBM\ILOG\CPLEX_Enterprise_Server129\CPLEX_Studio\cplex\examples)给予了格式说明:
在这里插入图片描述
下面我们首先给一个直接可以使用CPLEX求解的例子,然后在此基础上考虑一个更一般的例子(需要变量替换来符合格式)。

一个简单的例子

在这里插入图片描述
如上图所示,q1, q2可以直接转化为前面提到的CPLEX认可格式。下面给出源代码如下(注意项目需要预先配置好,配置请见上一篇博文):

#include <cmath>
#include <string>
#include <iostream>
#include <ilcplex/ilocplex.h>ILOSTLBEGIN // import namespace std// Tolerance for testing KKT conditions.
#define TESTTOL 1e-9
// Tolerance for barrier convergence.
#define CONVTOL 1e-9//  A Simple Example//  Minimize//   obj: x1 + x2 + x3 + x4 + x5 + x6//  Subject To//   c1: x1 + x2      + x5      = 8//   c2:           x3 + x5 + x6 = 10//   q1: x1 >= |(x2, x3)| ---->>>>  q1: [ -x1^2 + x2^2 + x3^2 ] <= 0 and x1 >=0//   q2: x4 >= |x5|       ---->>>>  q2: [ -x4^2 + x5^2 ] <= 0 and x4 >=0//  Bounds//   x2 Free//   x3 Free//   x5 Free//   x6 Free//  Endstatic void
createmodel(IloModel& model, IloObjective &obj, IloNumVarArray &x,IloRangeArray &rngs, IloIntArray& cone)
{IloEnv env = model.getEnv();// Create variables.x.add(IloNumVar(env, 0, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, 0, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));// Create objective function and immediately store it in return value.// obj = IloMinimize(env, x1 + x2 + x3 + x4 + x5 + x6);obj = IloMinimize(env, x[0]+x[1] + x[2] + x[3] + x[4] + x[5]);// Setup model.model.add(x[0] + x[1] + x[4]==8);model.add(x[2] + x[4] + x[5]==10);model.add(-x[0] * x[0] + x[1] * x[1] + x[2] * x[2]<=0);//equal to model.add(-x[3] * x[3] + x[4] * x[4]<=0), useful for lots of variablesdouble a[] = {0,0,0, -1,1 };IloExpr temp(env);for (IloInt i = 3; i < 5; i++){temp += a[i] * x[i] * x[i];}model.add(temp <= 0);temp.end();model.add(obj);
}int
main(void)
{IloEnv env;int retval = -1;try {// Create the model.IloModel model(env);IloCplex cplex(env);IloObjective obj(env);IloNumVarArray vars(env);IloRangeArray rngs(env);IloIntArray cone(env);createmodel(model, obj, vars, rngs, cone);// Extract model.cplex.extract(model);// Solve the problem. If we cannot find an _optimal_ solution then// there is no point in checking the KKT conditions and we throw an// exception.cplex.setParam(IloCplex::Param::Barrier::QCPConvergeTol, CONVTOL);if (!cplex.solve() || cplex.getStatus() != IloAlgorithm::Optimal)throw string("Failed to solve problem to optimality");IloNumArray vals_x(env);env.out() << "Solution status = " << cplex.getStatus() << endl;env.out() << "Solution value  = " << cplex.getObjValue() << endl;cplex.getValues(vals_x, vars);env.out() << "Values        = " << vals_x << endl;env.end();}catch (IloException &e) {cerr << "IloException: " << e << endl;if (env.getImpl())env.end();::abort();}catch (string& e) {cerr << e << endl;if (env.getImpl())env.end();::abort();}return retval;
}

运行结果如下图:
在这里插入图片描述

一个更一般的例子

在前面例子的基础上,我们只是改变了约束q1,使其更一般化,如下图所示:
在这里插入图片描述

为了将q1转化为合适的格式,我们使用变量替换 $x_7=x_1+x_2 $ 。因此只需在前面源代码中更改 createmodel 函数中的部分代码。为保持代码完整性,我们依旧给出完整的代码:

#include <cmath>
#include <string>
#include <iostream>
#include <ilcplex/ilocplex.h>ILOSTLBEGIN // import namespace std// Tolerance for testing KKT conditions.
#define TESTTOL 1e-9
// Tolerance for barrier convergence.
#define CONVTOL 1e-9//  A Simple Example//  Minimize//   obj: x1 + x2 + x3 + x4 + x5 + x6//  Subject To//   c1: x1 + x2      + x5      = 8//   c2:           x3 + x5 + x6 = 10//   q1: x1 + x2 >= |(x1, x2, x3)| ---->>>> q1:[-x7^2+x1^2+x2^2+x3^2]<=0 and x7=x1+x2>=0//   q2: x4 >= |x5|       ---->>>>  q2: [ -x4^2 + x5^2 ] <= 0 and x4 >=0//  Bounds//   x1 Free//   x2 Free//   x3 Free//   x5 Free//   x6 Free//  Endstatic void
createmodel(IloModel& model, IloObjective &obj, IloNumVarArray &x,IloRangeArray &rngs, IloIntArray& cone)
{IloEnv env = model.getEnv();// Create variables.x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, 0, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, 0, IloInfinity));// x7// Create objective function and immediately store it in return value.// obj = IloMinimize(env, x1 + x2 + x3 + x4 + x5 + x6);obj = IloMinimize(env, x[0]+x[1] + x[2] + x[3] + x[4] + x[5]);// Setup model.model.add(x[0] + x[1] + x[4]==8);model.add(x[2] + x[4] + x[5]==10);model.add(x[6] - x[0] - x[1] == 0); // x7 = x1 + x2model.add(-x[6] * x[6]+ x[0] * x[0] + x[1] * x[1] + x[2] * x[2]<=0); //[-x7^2+x1^2+x2^2+x3^2]<=0//equal to model.add(-x[3] * x[3] + x[4] * x[4]<=0), useful for lots of variablesdouble a[] = {0,0,0, -1,1 };IloExpr temp(env);for (IloInt i = 3; i < 5; i++){temp += a[i] * x[i] * x[i];}model.add(temp <= 0);temp.end();model.add(obj);
}int
main(void)
{IloEnv env;int retval = -1;try {// Create the model.IloModel model(env);IloCplex cplex(env);IloObjective obj(env);IloNumVarArray vars(env);IloRangeArray rngs(env);IloIntArray cone(env);createmodel(model, obj, vars, rngs, cone);// Extract model.cplex.extract(model);// Solve the problem. If we cannot find an _optimal_ solution then// there is no point in checking the KKT conditions and we throw an// exception.cplex.setParam(IloCplex::Param::Barrier::QCPConvergeTol, CONVTOL);if (!cplex.solve() || cplex.getStatus() != IloAlgorithm::Optimal)throw string("Failed to solve problem to optimality");IloNumArray vals_x(env);env.out() << "Solution status = " << cplex.getStatus() << endl;env.out() << "Solution value  = " << cplex.getObjValue() << endl;cplex.getValues(vals_x, vars);env.out() << "Values        = " << vals_x << endl;env.end();}catch (IloException &e) {cerr << "IloException: " << e << endl;if (env.getImpl())env.end();::abort();}catch (string& e) {cerr << e << endl;if (env.getImpl())env.end();::abort();}return retval;
}

运行结果如下图:
在这里插入图片描述

这篇关于【漫漫科研路\CC++】CPLEX解SOCP问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841948

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对