【漫漫科研路\CC++】Win10 + VS2017 + CUDA10.1 + CPLEX12.9 配置

2024-03-24 14:58

本文主要是介绍【漫漫科研路\CC++】Win10 + VS2017 + CUDA10.1 + CPLEX12.9 配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Win10下搭建VS2017+CUDA10.1+CPLEX12.9开发环境

想来已经有三、四年没有用过C/C++了,一直都是使用MATLAB进行算法的实现。相比于C/C++, MATLAB更加适合快速地实现算法,可视化仿真结果。但最近想学习并行计算(尽管MATLAB也可以实现并行化),并且实验室的服务器又装有RTX2080Ti的显卡,因此考虑使用CUDA平台实现GPU并行编程。另一方面,我需要使用IBM的CPLEX工具来验证算法的结果,于是乎就有了这篇文章。

VS2017的安装

VS2017的安装比较简单,我就不作介绍了。但是有两点需要注意:

  • 最好先安装VS2017,然后再安装CUDA和CPLEX,
  • 最好不要安装最新版本VS2019,CPLEX12.9目前支持的是VS2015和VS2017

CUDA10.1的安装

直接从NVIDIA官网下载最新版本的CUDA进行安装,也可以安装历史发行版本。按照默认设置安装即可。

测试是否安装成功
最快捷的方法是运行cuda安装完成后自带的样例,默认安装在C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1。下面我们介绍一般的方法,方便自己创建cuda项目:

  • 在VS2017中创建一个HelloWorld_GPU的项目,如下图所示:
    创建CUDA项目
  • 项目中自带一个kernel.cu的文件,可以直接运行,看是否运行成功。这里,我们依照传统,写一个更为简单的hello world程序来进行测试。删除kernel.cu文件,在项目中添加一个CUDA C/C++文件取名为Hello_World,程序如下:
#include<stdio.h>
#include"cuda_runtime.h"__global__ void helloFromGPU(void)
{printf("Hello World from GPU!\n");
}void main()
{printf("Hello World from CPU.\n\n");//Hello from CPUhelloFromGPU << <1, 10 >> > ();//call for 10 threads}

运行结果如下:
在这里插入图片描述


CPLEX12.9的安装

CPLEX12.9的安装是相对来说比较复杂的,简单来说,分为CPLEX12.9的下载项目的配置。具体细节如下:

CPLEX12.9教育版的下载

普通免费版本支持1000个变量或约束的优化,下载地址及网页如下:
在这里插入图片描述
为不受限制,我们需要使用学生邮箱进行验证下载(Get student and faculty editions for free). 然后在如下网页注册:
在这里插入图片描述
最后选择如下版本进行下载:
在这里插入图片描述


CPLEX项目配置
项目的创建:

首先创建一个C/C++项目,在项目中添加一个test.cpp(名称自取)文件,其代码来自于 IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX 的样例,代码如下:

#include <ilcplex/ilocplex.h>
#include <stdio.h>
using namespace std;ILOSTLBEGIN
int
main(void *) {IloEnv env;try {IloModel model(env);IloNumVarArray vars(env);vars.add(IloNumVar(env, 0.0, 40.0));  // 0 <= x1 <= 40vars.add(IloNumVar(env));  // 0 <= x2vars.add(IloNumVar(env));  // 0 <= x3model.add(IloMaximize(env, vars[0] + 2 * vars[1] + 3 * vars[2])); //maximize x1 + 2 x2 + 3 x3model.add(-vars[0] + vars[1] + vars[2] <= 20);//subject to -x1 + x2 + x3 <= 20model.add(vars[0] - 3 * vars[1] + vars[2] <= 30);//x1 - 3 x2 + x3 <=30IloCplex cplex(model);if (!cplex.solve()) {env.error() << "Failed to optimize LP." << endl;throw(-1);}IloNumArray vals(env);env.out() << "Solution status = " << cplex.getStatus() << endl;env.out() << "Solution value = " << cplex.getObjValue() << endl;cplex.getValues(vals, vars);env.out() << "Values = " << vals << endl;}catch (IloException & e) { cerr << "Concert exception caught: " << e << endl; }catch (...) { cerr << "Unknown exception caught" << endl; }env.end();system("pause");return 0;
}

注意:VS2017创建C/C++会自带pch.h和pch.cpp文件,我们可以删除这两个文件而不影响程序运行,具体可以通过项目->属性-> C/C++ -> Precompiled Headers -> Precompiled Header一项中选择Not Using Precompiled Headers 实现。


系统环境和项目的配置:

本文的配置完全依照 IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX 以及安装完CPLEX后,位于默认安装目录C:\ProgramFiles\IBM\ILOG\CPLEX_Enterprise_Server129\CPLEX_Studio\cplex的c_cpp.html文件

  • 电脑的系统环境变量配置参考IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX 中Setting up CPLEX on Windows一节中的设置:
    在这里插入图片描述
    具体操作如下:右击我的电脑->属性->高级系统设置->环境变量,编辑(添加)Path变量如下:
    在这里插入图片描述

  • 项目的配置参考前面提及的c_cpp.htmlBuilding your own project which links with CPLEX一节的第4点:
    在这里插入图片描述
    根据上图所示,项目具体配置如下
  1. 将调试环境改为 release 和 x64:
    在这里插入图片描述

  2. 右击项目、选择属性、然后选择C/C++一项:

    1). 在General(常规)一项中,选择Additional Include Directories,添加如下:
    在这里插入图片描述
    2). 在Preprocessor(预处理器)中,选择Preprocessor Definitions, 编辑如下:
    在这里插入图片描述
    3). 选择Code Generation(代码生成),然后选择Runtime Library(运行库), 设置如下 :
    在这里插入图片描述

  3. 右击项目、选择属性、然后选择Link一项,然后进行如下操作:
    1).选择 General一项,在 Additional Library Directories中添加如下库目录:在这里插入图片描述
    2). 选择Input,然后选择Additional Dependencies,设置如下:
    在这里插入图片描述
    完成上述项目配置后,注意按下确定按钮。注意:上述配置中的目录都是你CPLEX的安装目录。最后在菜单栏Build选项中选择Configuration Manager也需要选择Release和x64,如图所示:
    在这里插入图片描述
    至此,所有配置完成,运行项目,结果如下:
    在这里插入图片描述


原文:https://blog.csdn.net/tengweitw/article/details/103113392

作者:nineheadedbird


这篇关于【漫漫科研路\CC++】Win10 + VS2017 + CUDA10.1 + CPLEX12.9 配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841947

相关文章

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五