dubbo 源码系列之-集群三板斧---负载均衡(二)

2024-03-24 14:44

本文主要是介绍dubbo 源码系列之-集群三板斧---负载均衡(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一课时我们了解了 LoadBalance 接口定义以及 AbstractLoadBalance 抽象类的内容,还详细介绍了 ConsistentHashLoadBalance 以及 RandomLoadBalance 这两个实现类的核心原理和大致实现。本课时我们将继续介绍 LoadBalance 的剩余三个实现。

LeastActiveLoadBalance 最小活跃数

LeastActiveLoadBalance 使用的是最小活跃数负载均衡算法。它认为当前活跃请求数越小的 Provider 节点,剩余的处理能力越多,处理请求的效率也就越高,那么该 Provider 在单位时间内就可以处理更多的请求,所以我们应该优先将请求分配给该 Provider 节点。

LeastActiveLoadBalance 需要配合 ActiveLimitFilter 使用,ActiveLimitFilter 会记录每个接口方法的活跃请求数,在 LeastActiveLoadBalance 进行负载均衡时,只会从活跃请求数最少的 Invoker 集合里挑选 Invoker。

在 LeastActiveLoadBalance 的实现中,首先会选出所有活跃请求数最小的 Invoker 对象,之后的逻辑与 RandomLoadBalance 完全一样,即按照这些 Invoker 对象的权重挑选最终的 Invoker 对象。下面是 LeastActiveLoadBalance.doSelect() 方法的具体实现:

protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {// 初始化Invoker数量int length = invokers.size();// 记录最小的活跃请求数int leastActive = -1;// 记录活跃请求数最小的Invoker集合的个数int leastCount = 0;// 记录活跃请求数最小的Invoker在invokers数组中的下标位置 int[] leastIndexes = new int[length];// 记录活跃请求数最小的Invoker集合中,每个Invoker的权重值int[] weights = new int[length];// 记录活跃请求数最小的Invoker集合中,所有Invoker的权重值之和int totalWeight = 0;// 记录活跃请求数最小的Invoker集合中,第一个Invoker的权重值int firstWeight = 0;// 活跃请求数最小的集合中,所有Invoker的权重值是否相同boolean sameWeight = true;for (int i = 0; i < length; i++) { // 遍历所有Invoker,获取活跃请求数最小的Invoker集合Invoker<T> invoker = invokers.get(i);// 获取该Invoker的活跃请求数int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive();// 获取该Invoker的权重int afterWarmup = getWeight(invoker, invocation);weights[i] = afterWarmup;// 比较活跃请求数if (leastActive == -1 || active < leastActive) {// 当前的Invoker是第一个活跃请求数最小的Invoker,则记录如下信息leastActive = active; // 重新记录最小的活跃请求数leastCount = 1; // 重新记录活跃请求数最小的Invoker集合个数leastIndexes[0] = i; // 重新记录InvokertotalWeight = afterWarmup; // 重新记录总权重值firstWeight = afterWarmup; // 该Invoker作为第一个Invoker,记录其权重值sameWeight = true; // 重新记录是否权重值相等} else if (active == leastActive) { // 当前Invoker属于活跃请求数最小的Invoker集合leastIndexes[leastCount++] = i; // 记录该Invoker的下标totalWeight += afterWarmup; // 更新总权重if (sameWeight && afterWarmup != firstWeight) {sameWeight = false; // 更新权重值是否相等}}}// 如果只有一个活跃请求数最小的Invoker对象,直接返回即可if (leastCount == 1) {return invokers.get(leastIndexes[0]);}// 下面按照RandomLoadBalance的逻辑,从活跃请求数最小的Invoker集合中,随机选择一个Invoker对象返回if (!sameWeight && totalWeight > 0) {int offsetWeight = ThreadLocalRandom.current().nextInt(totalWeight);for (int i = 0; i < leastCount; i++) {int leastIndex = leastIndexes[i];offsetWeight -= weights[leastIndex];if (offsetWeight < 0) {return invokers.get(leastIndex);}}}return invokers.get(leastIndexes[ThreadLocalRandom.current().nextInt(leastCount)]);
}

ActiveLimitFilter 以及底层的 RpcStatus 记录活跃请求数的具体原理,在前面的[第 30 课时]中我们已经详细分析过了,这里不再重复,如果有不清楚的地方,你可以回顾之前课时相关的内容。

RoundRobinLoadBalance 加权轮询

RoundRobinLoadBalance 实现的是加权轮询负载均衡算法。

轮询指的是将请求轮流分配给每个 Provider。例如,有 A、B、C 三个 Provider 节点,按照普通轮询的方式,我们会将第一个请求分配给 Provider A,将第二个请求分配给 Provider B,第三个请求分配给 Provider C,第四个请求再次分配给 Provider A……如此循环往复。

轮询是一种无状态负载均衡算法,实现简单,适用于集群中所有 Provider 节点性能相近的场景。 但现实情况中就很难保证这一点了,因为很容易出现集群中性能最好和最差的 Provider 节点处理同样流量的情况,这就可能导致性能差的 Provider 节点各方面资源非常紧张,甚至无法及时响应了,但是性能好的 Provider 节点的各方面资源使用还较为空闲。这时我们可以通过加权轮询的方式,降低分配到性能较差的 Provider 节点的流量。

加权之后,分配给每个 Provider 节点的流量比会接近或等于它们的权重比。例如,Provider 节点 A、B、C 权重比为 5:1:1,那么在 7 次请求中,节点 A 将收到 5 次请求,节点 B 会收到 1 次请求,节点 C 则会收到 1 次请求。

在 Dubbo 2.6.4 版本及之前,RoundRobinLoadBalance 的实现存在一些问题,例如,选择 Invoker 的性能问题、负载均衡时不够平滑等。在 Dubbo 2.6.5 版本之后,这些问题都得到了修复,所以这里我们就来介绍最新的 RoundRobinLoadBalance 实现。

每个 Provider 节点有两个权重:一个权重是配置的 weight,该值在负载均衡的过程中不会变化;另一个权重是 currentWeight,该值会在负载均衡的过程中动态调整,初始值为 0。

当有新的请求进来时,

  1. RoundRobinLoadBalance 会遍历 Invoker 列表,并用对应的 currentWeight 加上其配置的权重。
  2. 遍历完成后,再找到最大的 currentWeight,将其减去权重总和,然后返回相应的 Invoker 对象。

下面我们通过一个示例说明 RoundRobinLoadBalance 的执行流程,这里我们依旧假设 A、B、C 三个节点的权重比例为 5:1:1。

在这里插入图片描述

  1. 处理第一个请求,currentWeight 数组中的权重与配置的 weight 相加,即从 [0, 0, 0] 变为 [5, 1, 1]。接下来,从中选择权重最大的 Invoker 作为结果,即节点 A。最后,将节点 A 的 currentWeight 值减去 totalWeight 值,最终得到 currentWeight 数组为 [-2, 1, 1]。
  2. 处理第二个请求,currentWeight 数组中的权重与配置的 weight 相加,即从 [-2, 1, 1] 变为 [3, 2, 2]。接下来,从中选择权重最大的 Invoker 作为结果,即节点 A。最后,将节点 A 的 currentWeight 值减去 totalWeight 值,最终得到 currentWeight 数组为 [-4, 2, 2]。
  3. 处理第三个请求,currentWeight 数组中的权重与配置的 weight 相加,即从 [-4, 2, 2] 变为 [1, 3, 3]。接下来,从中选择权重最大的 Invoker 作为结果,即节点 B。最后,将节点 B 的 currentWeight 值减去 totalWeight 值,最终得到 currentWeight 数组为 [1, -4, 3]。
  4. 处理第四个请求,currentWeight 数组中的权重与配置的 weight 相加,即从 [1, -4, 3] 变为 [6, -3, 4]。接下来,从中选择权重最大的 Invoker 作为结果,即节点 A。最后,将节点 A 的 currentWeight 值减去 totalWeight 值,最终得到 currentWeight 数组为 [-1, -3, 4]。
  5. 处理第五个请求,currentWeight 数组中的权重与配置的 weight 相加,即从 [-1, -3, 4] 变为 [4, -2, 5]。接下来,从中选择权重最大的 Invoker 作为结果,即节点 C。最后,将节点 C 的 currentWeight 值减去 totalWeight 值,最终得到 currentWeight 数组为 [4, -2, -2]。
  6. 处理第六个请求,currentWeight 数组中的权重与配置的 weight 相加,即从 [4, -2, -2] 变为 [9, -1, -1]。接下来,从中选择权重最大的 Invoker 作为结果,即节点 A。最后,将节点 A 的 currentWeight 值减去 totalWeight 值,最终得到 currentWeight 数组为 [2, -1, -1]。
  7. 处理第七个请求,currentWeight 数组中的权重与配置的 weight 相加,即从 [2, -1, -1] 变为 [7, 0, 0]。接下来,从中选择权重最大的 Invoker 作为结果,即节点 A。最后,将节点 A 的 currentWeight 值减去 totalWeight 值,最终得到 currentWeight 数组为 [0, 0, 0]。

到此为止,一个轮询的周期就结束了。

而在 Dubbo 2.6.4 版本中,上面示例的一次轮询结果是 [A, A, A, A, A, B, C],也就是说前 5 个请求会全部都落到 A 这个节点上。这将会使节点 A 在短时间内接收大量的请求,压力陡增,而节点 B 和节点 C 此时没有收到任何请求,处于完全空闲的状态,这种“瞬间分配不平衡”的情况也就是前面提到的“不平滑问题”。

在 RoundRobinLoadBalance 中,我们为每个 Invoker 对象创建了一个对应的 WeightedRoundRobin 对象,用来记录配置的权重(weight 字段)以及随每次负载均衡算法执行变化的 current 权重(current 字段)。

了解了 WeightedRoundRobin 这个内部类后,我们再来看 RoundRobinLoadBalance.doSelect() 方法的具体实现:

protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();// 获取整个Invoker列表对应的WeightedRoundRobin映射表,如果为空,则创建一个新的WeightedRoundRobin映射表ConcurrentMap<String, WeightedRoundRobin> map = methodWeightMap.computeIfAbsent(key, k -> new ConcurrentHashMap<>());int totalWeight = 0;long maxCurrent = Long.MIN_VALUE;long now = System.currentTimeMillis(); // 获取当前时间Invoker<T> selectedInvoker = null;WeightedRoundRobin selectedWRR = null;for (Invoker<T> invoker : invokers) {String identifyString = invoker.getUrl().toIdentityString();int weight = getWeight(invoker, invocation);// 检测当前Invoker是否有相应的WeightedRoundRobin对象,没有则进行创建WeightedRoundRobin weightedRoundRobin = map.computeIfAbsent(identifyString, k -> {WeightedRoundRobin wrr = new WeightedRoundRobin();wrr.setWeight(weight);return wrr;});// 检测Invoker权重是否发生了变化,若发生变化,则更新WeightedRoundRobin的weight字段if (weight != weightedRoundRobin.getWeight()) {weightedRoundRobin.setWeight(weight);}// 让currentWeight加上配置的Weightlong cur = weightedRoundRobin.increaseCurrent();//  设置lastUpdate字段weightedRoundRobin.setLastUpdate(now);// 寻找具有最大currentWeight的Invoker,以及Invoker对应的WeightedRoundRobinif (cur > maxCurrent) {maxCurrent = cur;selectedInvoker = invoker;selectedWRR = weightedRoundRobin;}totalWeight += weight; // 计算权重总和}if (invokers.size() != map.size()) {map.entrySet().removeIf(item -> now - item.getValue().getLastUpdate() > RECYCLE_PERIOD);}if (selectedInvoker != null) {// 用currentWeight减去totalWeightselectedWRR.sel(totalWeight);// 返回选中的Invoker对象return selectedInvoker;}return invokers.get(0);
}

ShortestResponseLoadBalance 最短响应时间

ShortestResponseLoadBalance 是Dubbo 2.7 版本之后新增加的一个 LoadBalance 实现类。它实现了最短响应时间的负载均衡算法,也就是从多个 Provider 节点中选出调用成功的且响应时间最短的 Provider 节点,不过满足该条件的 Provider 节点可能有多个,所以还要再使用随机算法进行一次选择,得到最终要调用的 Provider 节点。

了解了 ShortestResponseLoadBalance 的核心原理之后,我们一起来看 ShortestResponseLoadBalance.doSelect() 方法的核心实现,如下所示:

protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {// 记录Invoker集合的数量int length = invokers.size();// 用于记录所有Invoker集合中最短响应时间long shortestResponse = Long.MAX_VALUE;// 具有相同最短响应时间的Invoker个数int shortestCount = 0;// 存放所有最短响应时间的Invoker的下标int[] shortestIndexes = new int[length];// 存储每个Invoker的权重int[] weights = new int[length];// 存储权重总和int totalWeight = 0;// 记录第一个Invoker对象的权重int firstWeight = 0;// 最短响应时间Invoker集合中的Invoker权重是否相同boolean sameWeight = true;for (int i = 0; i < length; i++) {Invoker<T> invoker = invokers.get(i);RpcStatus rpcStatus = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName());// 获取调用成功的平均时间,具体计算方式是:调用成功的请求数总数对应的总耗时 / 调用成功的请求数总数 = 成功调用的平均时间// RpcStatus 的内容在前面课时已经介绍过了,这里不再重复long succeededAverageElapsed = rpcStatus.getSucceededAverageElapsed();// 获取的是该Provider当前的活跃请求数,也就是当前正在处理的请求数int active = rpcStatus.getActive();// 计算一个处理新请求的预估值,也就是如果当前请求发给这个Provider,大概耗时多久处理完成long estimateResponse = succeededAverageElapsed * active;// 计算该Invoker的权重(主要是处理预热)int afterWarmup = getWeight(invoker, invocation);weights[i] = afterWarmup;if (estimateResponse < shortestResponse) { // 第一次找到Invoker集合中最短响应耗时的Invoker对象,记录其相关信息shortestResponse = estimateResponse;shortestCount = 1;shortestIndexes[0] = i;totalWeight = afterWarmup;firstWeight = afterWarmup;sameWeight = true;} else if (estimateResponse == shortestResponse) {// 出现多个耗时最短的Invoker对象shortestIndexes[shortestCount++] = i;totalWeight += afterWarmup;if (sameWeight && i > 0&& afterWarmup != firstWeight) {sameWeight = false;}}}if (shortestCount == 1) {return invokers.get(shortestIndexes[0]);}// 如果耗时最短的所有Invoker对象的权重不相同,则通过加权随机负载均衡的方式选择一个Invoker返回if (!sameWeight && totalWeight > 0) {int offsetWeight = ThreadLocalRandom.current().nextInt(totalWeight);for (int i = 0; i < shortestCount; i++) {int shortestIndex = shortestIndexes[i];offsetWeight -= weights[shortestIndex];if (offsetWeight < 0) {return invokers.get(shortestIndex);}}}// 如果耗时最短的所有Invoker对象的权重相同,则随机返回一个return invokers.get(shortestIndexes[ThreadLocalRandom.current().nextInt(shortestCount)]);
}

总结

我们紧接上一课时介绍了 LoadBalance 接口的剩余三个实现。

我们首先介绍了

  • LeastActiveLoadBalance 实现,它使用最小活跃数负载均衡算法,选择当前请求最少的 Provider 节点处理最新的请求;
  • 接下来介绍了 RoundRobinLoadBalance 实现,它使用加权轮询负载均衡算法,弥补了单纯的轮询负载均衡算法导致的问题,同时随着 Dubbo 版本的升级,也将其自身不够平滑的问题优化掉了;
  • 最后介绍了 ShortestResponseLoadBalance 实现,它会从响应时间最短的 Provider 节点中选择一个 Provider 节点来处理新请求。

这篇关于dubbo 源码系列之-集群三板斧---负载均衡(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841910

相关文章

SpringBoot整合Dubbo+ZK注册失败的坑及解决

《SpringBoot整合Dubbo+ZK注册失败的坑及解决》使用Dubbo框架时,需在公共pom添加依赖,启动类加@EnableDubbo,实现类用@DubboService替代@Service,配... 目录1.先看下公共的pom(maven创建的pom工程)2.启动类上加@EnableDubbo3.实

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Jenkins分布式集群配置方式

《Jenkins分布式集群配置方式》:本文主要介绍Jenkins分布式集群配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装jenkins2.配置集群总结Jenkins是一个开源项目,它提供了一个容易使用的持续集成系统,并且提供了大量的plugin满

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

SpringBoot连接Redis集群教程

《SpringBoot连接Redis集群教程》:本文主要介绍SpringBoot连接Redis集群教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 依赖2. 修改配置文件3. 创建RedisClusterConfig4. 测试总结1. 依赖 <de

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx