Python环境下信号的包络谱分析

2024-03-24 13:52

本文主要是介绍Python环境下信号的包络谱分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

通过信号的频域分析可以获得轴承振动信号在频域内的频率成分分布,即信号的频谱,从中能够提取与轴承故障相关的频率成分幅值与相位,是信号分析中最根本的方法之一。常见的频域分析方法一般有:傅里叶谱分析、解调谱分析和倒频谱分析等。

傅里叶谱分析是可以直观展示信号在整个谱频率域分布状态的方法。通过傅里叶变换后,将信号从时域转换到频域,获得信号在频域上的分布特点,从而观察信号中的频率特征。在对轴承进行故障诊断时,比较轴承振动信号中不同频率成分在傅里叶谱中的分布情况及幅值大小,能够判断轴承是否发生故障及其故障水平。

解调谱分析,即对调制信号的包络解调。当轴承发生局部损伤故障时,系统固有频率会对故障产生的宽带冲击行进调制,此时利用解调分析处理轴承振动信号,可以从信号高频共振频率中把包含轴承故障的低频成分提取出来,从而从包络谱中观察轴承故障特征。常用的解调方法主要包括:Hilbert解调、能量算子解调、平方算子解调等。

倒频谱分析,有时称它为时谱分析,可以用来提取信号频谱中的周期成分,它定义为信号功率谱对数的功率谱。发生局部损伤的轴承元件转动时因相互碰撞而产生周期冲击,此冲击激发轴承系统产生响应,所以此时获得的轴承振动信号是由上述周期冲击与冲击激发的轴承系统响应卷积而来,使谱中产生谐波分量,倒频谱分析则是通过提取上述谐波分量的距离,进而运用到轴承故障诊断中。

注:Hilbert变换通常用来得到解析信号,可以用来对窄带信号进行解包络,并求解信号的瞬时频率。对信号进行Hilbert变换时,会使信号产生一个90°的相位移,并与原信号构成一个解析信号,即为包络信号。Hilbert变换的实质上相当于把原信号通过了一个原始信号和一个信号做卷积的滤波器。可以看成是将原始信号通过一个滤波器。

基于Hilbert变换的包络谱分析简单明了,可解释性较强,有数学理论作为保证,在诸如管道泄漏检测、机械故障诊断、舰船噪声分析、结构损伤识别、油中水分含量检测、电池故障分析、辐射源个体识别、负荷状态识别、污染预测等方面有重要应用。

本项目采用包络谱对轴承振动信号进行分析,运行环境为Python,部分代码如下:

#信号的包络谱分析
#首先导入相关模块
import scipy.io as scio
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal, fftpack, stats
#设置绘图参数
from matplotlib import rcParams
config = {"font.family": 'serif', # 衬线字体"font.size": 10, # 相当于小四大小"font.serif": ['SimSun'], # 宋体"mathtext.fontset": 'stix', # matplotlib渲染数学字体时使用的字体,和Times New Roman差别不大'axes.unicode_minus': False # 处理负号,即-号
}
rcParams.update(config)
#加载轴承内圈故障数据
def data_acquision(FilePath):"""fun: 从cwru mat文件读取加速度数据param file_path: mat文件绝对路径return accl_data: 加速度数据,array类型"""data = scio.loadmat(file_path)  # 加载mat数据data_key_list = list(data.keys())  # mat文件为字典类型,获取字典所有的键并转换为list类型accl_key = data_key_list[3]  # 获取'X108_DE_time'accl_data = data[accl_key].flatten()  # 获取'X108_DE_time'所对应的值,即为振动加速度信号,并将二维数组展成一维数组return accl_data
#绘制时域波形
file_path = '1730_12k_0.007-InnerRace.mat'
xt = data_acquision(file_path)
plt.figure(figsize=(12,3))
plt.plot(xt)
print(xt)
#做Hilbert变换
ht = fftpack.hilbert(xt)
print(ht)
#计算信号的包络
at = np.sqrt(ht**2+xt**2)   # at = sqrt(xt^2 + ht^2)
#对包络信号做fft变换即为信号的包络谱
sampling_rate = 12000
am = np.fft.fft(at)   # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)       # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(at), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
#绘制包络谱
plt.plot(freq, am)
#去直流分量
#在0Hz的幅值比较高,使得其它频率幅值较低,不便观察。这种现象叫直流分量,去直流分量方法,y = y-mean(y)
sampling_rate = 12000
at = at - np.mean(at)  # 去直流分量
am = np.fft.fft(at)    # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)        # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(at), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
plt.plot(freq, am)
#使用包络谱在低频部分观察
sampling_rate = 12000
at = at - np.mean(at)  # 去直流分量
am = np.fft.fft(at)    # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)        # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(at), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
plt.figure(figsize=(12,3))
plt.plot(freq, am)
plt.xlim(0,500)bpfi, bpfo, bsf, ftf, fr = bearing_fault_freq_cal(n=9, alpha=0, d=7.94, D=39.04, fr=1730)
print('内圈故障特征频率',bpfi)
print('外圈故障特征频率',bpfo)
print('滚动体故障特征频率',bsf)
print(ftf)
print(fr)
#理论故障特征频率与实际故障特征频率验证
sampling_rate = 12000
at = at - np.mean(at)  # 去直流分量
am = np.fft.fft(at)    # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)        # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(at), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
plt.figure(figsize=(12,3))
plt.plot(freq, am)
plt.xlim(0,500)
plt.vlines(x=156.13, ymin=0, ymax=0.2, colors='r')  # 一倍频
plt.vlines(x=156.13*2, ymin=0, ymax=0.2, colors='r')  # 二倍频
#与FFT进行对比分析
sampling_rate = 12000
am = np.fft.fft(xt)   # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)       # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(xt), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
plt.plot(freq, am)plt.plot(freq, am)
plt.xlim(0, 500)
plt.vlines(x=156.13, ymin=0, ymax=0.05, colors='r')  # 一倍频
plt.vlines(x=156.13*2, ymin=0, ymax=0.05, colors='r')  # 二倍频#外圈故障数据测试
file_path = '1730_12k_0.007-OuterRace3.mat'
data = data_acquision(file_path)
plt_envelope_spectrum(data = data, fs=12000, xlim=300, vline=bpfo)
#滚动体故障数据测试分析
file_path = '1730_12k_0.014-Ball.mat'
data = data_acquision(file_path)
plt_envelope_spectrum(data = data, fs=12000, xlim=300, vline=bsf)

外圈

滚动体

完整代码:
Python环境下信号的包络谱分析

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于Python环境下信号的包络谱分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841797

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3