Yolo 一小时吃透 yolov4 yolov5 原理

2024-03-24 09:30

本文主要是介绍Yolo 一小时吃透 yolov4 yolov5 原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一小时吃透 yolov4 & yolov5 原理

  • 概述
  • 网络结构
  • BOF
    • 数据增强
    • 马赛克数据增强
    • 对抗训练
    • Drop Block
  • BOS
    • SPPNet
    • CSPNet
    • CBAM
    • PANet
  • 损失函数
    • 标签平滑
    • IOU
    • GIOU
    • DIOU
    • CIOU
    • 对比
    • DIOU-NMS
    • SOFT-NMS
    • Mish 激活函数
    • 网络敏感性

概述

Yolo 之父 Joe Redmon 在相继发布了 yolov1 (2015) yolov2 (2016), yolov2 (2018) 的两年后. 在 2020 年 2 月 20 号在 Twitter 上宣布退出 CV 界.
在这里插入图片描述
俄罗斯的 Alexey 大佬扛起了 Yolov4 的重任.

网络结构

yolov3:

在这里插入图片描述

yolov4:
在这里插入图片描述

BOF

BOF (Bag of Freebies) 是一种增加训练成本但是能显著提高精度的方法集.

在这里插入图片描述

数据增强

通过调整亮度, 对比度, 色调, 缩放, 剪切, 旋转等方法增加训练图像的多样性. 从而使得模型有更强的泛化能力 (Generaliztion Ability).

不同的数据增强对比:
在这里插入图片描述

  • Mixup: 将随机的两张样本按比例混合, 分类的结果按比例分配
  • Cutout: 随机的将样本中的部分区域裁剪掉, 并填充 0 像素值, 分类的结果不变
  • CutMix: 将一部分区域裁剪掉, 并随机用训练集中的其他数据区域像素值进行填充, 结果按一定比例分配

马赛克数据增强

马赛克数据增强 (Mosaic Data Augmentation) 通过把四张图片随机裁剪混合成一张图片来实现数据增强. Yolov4 中使用的 Mostic 是 CutMix 的一种延伸. 例如:
在这里插入图片描述
Mosaic 的优点:

  • 丰富数据集: 使用 4 张随机图片缩放拼接, 丰富了检测数据集, 增加了很多小目标
  • 减少 GPU: 通过缩放, 以及一次计算 4 张图片. 充分利用了 GPU 资源, 使得 batch_size 不用很大就能达到很好的效果

对抗训练

SAT (Self Adversaraial Training) 即对抗训练. 样本会被添加很小比例的噪声, 从而增加模型的泛化能力. 如图:在这里插入图片描述

Drop Block

Drop Block 会随机 drop 图片的一个区域从而增加学习的强度. 如图:
在这里插入图片描述
公式 (了解即可):
在这里插入图片描述
Drop Block 效果:
在这里插入图片描述

BOS

BOS (Bag of Specials) 指的是可以提升检测效果但只些微增加成本的一组方法.

SPPNet

SPPNet(Spatial Pyramid Pooling) 即金字塔池化, 可以帮助我们将图像切分成各种粗细级别, 然后整合特征.
在这里插入图片描述
金字塔池化解决了固定图像尺寸的限制 (最大池化), 并提高了提取特征的效率.

CSPNet

CSPNet (Cross Stage Partial Network) CSPNet 通过将梯度的变化从头到尾地集成到特征图中, 在减少了计算量的同时可以保证准确率.
在这里插入图片描述
如上图, 将一层分为两部分. 一半不进行操作直接连接, 另一半进行卷积操作.

CBAM

CBAM (Convolutional Block Attention Module) 注意力模块, 通过空间和通道两个维度推断出注意力权重. 然后与原特征相乘来对特征进行自适应调整.
在这里插入图片描述

通道注意力模块:
在这里插入图片描述
特征的每一个通道都代表一个专门的检测器. 通道注意力是关注什么样的特征是有意义的.

空间注意力模块:
在这里插入图片描述引入空间注意力模块来关注哪里的特征是有意义的.

Yolo4 对空间注意力模块进行了简化:
在这里插入图片描述

PANet

PANet (Path Aggregation Network) 路径聚合网络, 通过添加自下而上的路径增强缩短了较低层和顶层之间的信息路径. 高层神经元反映了整个目标, 底层神经元反映了目标的基础信息.

在这里插入图片描述

  • (a) 是 FPN (Feature Pyramid Networks)
  • (b) 通过自下而上的捷径使得低层信息更好的向高层传播
  • © 允许每个提案访问所有层的信息来进行预测

yolov5 PanNet 流程:
在这里插入图片描述在这里插入图片描述

损失函数

标签平滑

标签平滑 (Label Smoothing) 是一种损失函数的修正, 可以帮助我们提高图像分类的准确性. 标签平滑将神经网络的训练目标从 “1” 调整为 “1 - 标签平滑矫正”.

在这里插入图片描述
标签平滑可以帮助我们在一定程度上避免过拟合, 帮助我们提高模型对新数据的预测能力.

未使用标签平滑:
在这里插入图片描述
使用标签平滑:
在这里插入图片描述
我们可以看出, 通过标签平滑, 分类的簇更紧密, 簇间距离更大.

IOU

在计算 IOU (Intersection over Union) 也就是交并比.
在这里插入图片描述

在使用 IOU 的时候我们会发现 2 个问题:

  1. 当预测框和实际框没有交集的时候 IOU 的值为 0, 我们就无法完成梯度计算
  2. IOU 无法精确反映预测框和真实框的重合度大小.

在这里插入图片描述
如图, 三种情况 IOU 都相同. 但是重合度依左往右递减.

GIOU

GIOU (Generalized Intersection over Union) 引入了最小封闭形状的概念, 如图中的 C:
在这里插入图片描述
GIOU 能在预测框和真实框不重叠的情况下能让预测框尽可能朝着真实框前进.

在这里插入图片描述
但在重叠的情况下, 就会产生一个问题 GIOU 的值会相等.

DIOU

DIOU (Distance IOU) 在 GIOU 的基础上添加了距离.
在这里插入图片描述

公式:
在这里插入图片描述

  • 分子: 计算预测框和真实框的中心点欧式距离 d
  • 分母: 预测框和真实框最小封闭形状的对角线长度 c

在这里插入图片描述

优点:

  • 收敛速度快: DIOU 可以直接最小化两个目标框的距离, 比 GIOU 收敛更快
  • 解决重叠: DIOU 可以提供一个朝真实框的移动方向

CIOU

CIOU (Complete IOU) 在 DIOU 的基础上增加了回归三要素: 重叠面积, 中心点距离, 长宽比. Yolov4 使用的就是 CIOU.

公式:
在这里插入图片描述

对比

在这里插入图片描述

DIOU-NMS

DIOU-NMS (Distance Intersection of Union None Maximal Suppression) 是 NMS (None Maximal Suppression) 的升级版.

公式:
在这里插入图片描述

  • M: 高置信度候选框
  • Bi: 另一个临近的框

在这里插入图片描述
当两个不同物体挨得很近时, 由于 IOU 值比较大, 往往经过 NMS 处理后, 就只剩下一个检测框, 这样会导致漏检的错误情况发生. DIOU-NMS 不仅考虑了 IOU, 还考虑了两个框中心点的距离, 从而避免相邻物体被过滤的情况.

SOFT-NMS

SOFT-NMS 在 NMS 的基础上用降分机制取代了直接剔除. 当 M 为当前得分最高框, Bi 为待处理框, Bi 和 M 的 IOU 越大, Bi 的得分 Si 就下降的越厉害.
在这里插入图片描述

Mish 激活函数

Mish (Self Regularized Non-Monotonic Neural Activation) 自正则的非单调神经激活函数, 一个可能比 Relu 都牛逼的激活函数. 平滑的激活函数允许更好的信息深入神经网络, 从而得到更好的准确性和泛化.
在这里插入图片描述
公式:
在这里插入图片描述

Mish 激活函数 vs 其他的激活函数:
在这里插入图片描述

网络敏感性

消除网络敏感性 (Eliminate Grid Sensitivity) 通过在逻辑回归激活函数前面乘上一个大于 1 的系数来避免网络难以达到边界.

在这里插入图片描述
坐标回归的预测值都在 0~1 之间. 如果左边落在了边界就很难达到.
在这里插入图片描述
当 bx=cx 和 bx=cx+1 这两种情况, 按照 Sigmod 激活函数必须得到一个极大的负值或正值才能使得 损失很小. 但如果修改公式使 σ 乘以一个系数, 那么要得到较小的损失则容易得多.

公式:
在这里插入图片描述

这篇关于Yolo 一小时吃透 yolov4 yolov5 原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841179

相关文章

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意