hdoj1850 Being a Good Boy in Spring Festival

2024-03-24 07:32

本文主要是介绍hdoj1850 Being a Good Boy in Spring Festival,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中文:

题目就是中文,有M堆扑克牌,现在两个人轮流在桌子上拿牌,每个人每次选择一堆牌最少拿一个,问先手胜出的情况下,有多少种拿牌方法。

代码:

#include<iostream>
using namespace std;
int main()
{int n,a[101],temj,count;int i,j;while(~scanf("%d",&n),n){for(i=1;i<=n;i++)scanf("%d",&a[i]);count=0;for(i=1;i<=n;i++){temj=0;for(j=1;j<=n;j++){if(j==i)continue;temj^=a[j];}if(a[i]-temj>0)count++;}printf("%d\n",count);}return 0;
}

代码2:

#include<bits/stdc++.h>
using namespace std;int a[101];
int main()
{ios::sync_with_stdio(false);int m;while(cin>>m,m){int ans = 0, cnt = 0;for (int i=0;i<m;i++){cin>>a[i];ans = ans ^ a[i];}if (ans){for (int i=0;i<m;i++){if((ans^a[i]) <= a[i]){cnt++;}}}cout<<cnt<<endl;}return 0;
}

解答:

好久没看过博弈的问题了,从大学毕业到现在,差不多快10年,岁月匆匆。前不久在知乎上看到有人讨论SG函数的问题,基本上都忘干净了,再从头学一下。

博弈问题主要是三个基本模型
威佐夫博弈,巴什博弈和Nim博弈,有一篇论文叫一类取石子问题,作者是张一飞,是很好的参考材料。

这道题目是非常简单的Nim博弈问题,如果题目提问的是先手胜出或者是后手生成,那么就看这N个数的异或结果是否为0,如果为0则后手必胜,否则先手必胜。但是题目中询问的是如果先手胜出,有多少种拿石子的方法,这里需要了解一下Nim博弈使用异或计算的原理。

先说结论,设N堆石子的数量为 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An,如果 A 1 x o r A 2 x o r . . . A n = 0 A_1 xor A_2 xor ... A_n = 0 A1xorA2xor...An=0
此时有先手必败状态,例如有两堆石子,两堆石子的异或结果为0的情况,必然是两堆石子的数量相同,此时如果先手在其中一堆石子拿取x个,那么后手可以通过在另外一堆石子拿取得x个石子,使游戏状态变为初始的状态,最后石子拿光,先手无石子可拿,导致失败。

如果是N堆石子,且初始的N堆石子在前后手都使用优策略下可以达到先手必败,如果想要达到先手必败的状态,那么就需要后手每次能够在先手拿完石子后将游戏的局面恢复至“平衡”,这里的平衡是指在前后手都使用最佳策略的情况下,后手可以正好拿完最后一堆石子的局面。
即先手在某一堆拿了x个石子,后手需要在其中一堆拿y颗石子,使得最后剩余的石子仍然能够达到先手必败,后手必胜。

这里,游戏的“平衡”态,使用通俗的语言来表示,即在偶数次最优策略操作后,可以达到所有石子全是0的一个状态,这种操作的状态与异或运算的性质是相符合的。即所有石子异或结果为0的情况,为一个“平衡”状态,此时先手必败。

如果是一个非“平衡”状态,那么异或结果不为0,假设此时异或结果为k。此时,在这N堆石子中有一堆石子的数量是大于等于K的(异或计算的性质,想想二进制就明白了),那么可以在这堆石子中拿走k个,使状态变为平衡状态。

本题目中,如果需要计数有多少种先手必胜的方案,那么只需要考虑起始条件下,有多少堆石子是大于等于k,那么就有多少种拿法,起始条件拿取k个后,变为“平衡”态,后面的石子拿法按照最佳策略,都是固定的。

这篇关于hdoj1850 Being a Good Boy in Spring Festival的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840873

相关文章

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.