hdoj1850 Being a Good Boy in Spring Festival

2024-03-24 07:32

本文主要是介绍hdoj1850 Being a Good Boy in Spring Festival,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中文:

题目就是中文,有M堆扑克牌,现在两个人轮流在桌子上拿牌,每个人每次选择一堆牌最少拿一个,问先手胜出的情况下,有多少种拿牌方法。

代码:

#include<iostream>
using namespace std;
int main()
{int n,a[101],temj,count;int i,j;while(~scanf("%d",&n),n){for(i=1;i<=n;i++)scanf("%d",&a[i]);count=0;for(i=1;i<=n;i++){temj=0;for(j=1;j<=n;j++){if(j==i)continue;temj^=a[j];}if(a[i]-temj>0)count++;}printf("%d\n",count);}return 0;
}

代码2:

#include<bits/stdc++.h>
using namespace std;int a[101];
int main()
{ios::sync_with_stdio(false);int m;while(cin>>m,m){int ans = 0, cnt = 0;for (int i=0;i<m;i++){cin>>a[i];ans = ans ^ a[i];}if (ans){for (int i=0;i<m;i++){if((ans^a[i]) <= a[i]){cnt++;}}}cout<<cnt<<endl;}return 0;
}

解答:

好久没看过博弈的问题了,从大学毕业到现在,差不多快10年,岁月匆匆。前不久在知乎上看到有人讨论SG函数的问题,基本上都忘干净了,再从头学一下。

博弈问题主要是三个基本模型
威佐夫博弈,巴什博弈和Nim博弈,有一篇论文叫一类取石子问题,作者是张一飞,是很好的参考材料。

这道题目是非常简单的Nim博弈问题,如果题目提问的是先手胜出或者是后手生成,那么就看这N个数的异或结果是否为0,如果为0则后手必胜,否则先手必胜。但是题目中询问的是如果先手胜出,有多少种拿石子的方法,这里需要了解一下Nim博弈使用异或计算的原理。

先说结论,设N堆石子的数量为 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An,如果 A 1 x o r A 2 x o r . . . A n = 0 A_1 xor A_2 xor ... A_n = 0 A1xorA2xor...An=0
此时有先手必败状态,例如有两堆石子,两堆石子的异或结果为0的情况,必然是两堆石子的数量相同,此时如果先手在其中一堆石子拿取x个,那么后手可以通过在另外一堆石子拿取得x个石子,使游戏状态变为初始的状态,最后石子拿光,先手无石子可拿,导致失败。

如果是N堆石子,且初始的N堆石子在前后手都使用优策略下可以达到先手必败,如果想要达到先手必败的状态,那么就需要后手每次能够在先手拿完石子后将游戏的局面恢复至“平衡”,这里的平衡是指在前后手都使用最佳策略的情况下,后手可以正好拿完最后一堆石子的局面。
即先手在某一堆拿了x个石子,后手需要在其中一堆拿y颗石子,使得最后剩余的石子仍然能够达到先手必败,后手必胜。

这里,游戏的“平衡”态,使用通俗的语言来表示,即在偶数次最优策略操作后,可以达到所有石子全是0的一个状态,这种操作的状态与异或运算的性质是相符合的。即所有石子异或结果为0的情况,为一个“平衡”状态,此时先手必败。

如果是一个非“平衡”状态,那么异或结果不为0,假设此时异或结果为k。此时,在这N堆石子中有一堆石子的数量是大于等于K的(异或计算的性质,想想二进制就明白了),那么可以在这堆石子中拿走k个,使状态变为平衡状态。

本题目中,如果需要计数有多少种先手必胜的方案,那么只需要考虑起始条件下,有多少堆石子是大于等于k,那么就有多少种拿法,起始条件拿取k个后,变为“平衡”态,后面的石子拿法按照最佳策略,都是固定的。

这篇关于hdoj1850 Being a Good Boy in Spring Festival的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840873

相关文章

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B