hdoj1850 Being a Good Boy in Spring Festival

2024-03-24 07:32

本文主要是介绍hdoj1850 Being a Good Boy in Spring Festival,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中文:

题目就是中文,有M堆扑克牌,现在两个人轮流在桌子上拿牌,每个人每次选择一堆牌最少拿一个,问先手胜出的情况下,有多少种拿牌方法。

代码:

#include<iostream>
using namespace std;
int main()
{int n,a[101],temj,count;int i,j;while(~scanf("%d",&n),n){for(i=1;i<=n;i++)scanf("%d",&a[i]);count=0;for(i=1;i<=n;i++){temj=0;for(j=1;j<=n;j++){if(j==i)continue;temj^=a[j];}if(a[i]-temj>0)count++;}printf("%d\n",count);}return 0;
}

代码2:

#include<bits/stdc++.h>
using namespace std;int a[101];
int main()
{ios::sync_with_stdio(false);int m;while(cin>>m,m){int ans = 0, cnt = 0;for (int i=0;i<m;i++){cin>>a[i];ans = ans ^ a[i];}if (ans){for (int i=0;i<m;i++){if((ans^a[i]) <= a[i]){cnt++;}}}cout<<cnt<<endl;}return 0;
}

解答:

好久没看过博弈的问题了,从大学毕业到现在,差不多快10年,岁月匆匆。前不久在知乎上看到有人讨论SG函数的问题,基本上都忘干净了,再从头学一下。

博弈问题主要是三个基本模型
威佐夫博弈,巴什博弈和Nim博弈,有一篇论文叫一类取石子问题,作者是张一飞,是很好的参考材料。

这道题目是非常简单的Nim博弈问题,如果题目提问的是先手胜出或者是后手生成,那么就看这N个数的异或结果是否为0,如果为0则后手必胜,否则先手必胜。但是题目中询问的是如果先手胜出,有多少种拿石子的方法,这里需要了解一下Nim博弈使用异或计算的原理。

先说结论,设N堆石子的数量为 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An,如果 A 1 x o r A 2 x o r . . . A n = 0 A_1 xor A_2 xor ... A_n = 0 A1xorA2xor...An=0
此时有先手必败状态,例如有两堆石子,两堆石子的异或结果为0的情况,必然是两堆石子的数量相同,此时如果先手在其中一堆石子拿取x个,那么后手可以通过在另外一堆石子拿取得x个石子,使游戏状态变为初始的状态,最后石子拿光,先手无石子可拿,导致失败。

如果是N堆石子,且初始的N堆石子在前后手都使用优策略下可以达到先手必败,如果想要达到先手必败的状态,那么就需要后手每次能够在先手拿完石子后将游戏的局面恢复至“平衡”,这里的平衡是指在前后手都使用最佳策略的情况下,后手可以正好拿完最后一堆石子的局面。
即先手在某一堆拿了x个石子,后手需要在其中一堆拿y颗石子,使得最后剩余的石子仍然能够达到先手必败,后手必胜。

这里,游戏的“平衡”态,使用通俗的语言来表示,即在偶数次最优策略操作后,可以达到所有石子全是0的一个状态,这种操作的状态与异或运算的性质是相符合的。即所有石子异或结果为0的情况,为一个“平衡”状态,此时先手必败。

如果是一个非“平衡”状态,那么异或结果不为0,假设此时异或结果为k。此时,在这N堆石子中有一堆石子的数量是大于等于K的(异或计算的性质,想想二进制就明白了),那么可以在这堆石子中拿走k个,使状态变为平衡状态。

本题目中,如果需要计数有多少种先手必胜的方案,那么只需要考虑起始条件下,有多少堆石子是大于等于k,那么就有多少种拿法,起始条件拿取k个后,变为“平衡”态,后面的石子拿法按照最佳策略,都是固定的。

这篇关于hdoj1850 Being a Good Boy in Spring Festival的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840873

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S