深度学习 (自动求导)

2024-03-24 05:44
文章标签 学习 深度 自动 求导

本文主要是介绍深度学习 (自动求导),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍:

深度学习是一种机器学习方法,其使用神经网络模型来进行学习和预测。自动求导是深度学习中的一项重要技术,用于计算神经网络中各个参数对损失函数的偏导数。

在深度学习中,我们通常使用一个损失函数来衡量模型的预测结果与真实值之间的差异。然后,我们通过调整神经网络中的参数,以最小化损失函数,从而改善模型的预测能力。

自动求导是指计算某个函数的导数时,由计算机自动完成的过程。在深度学习中,我们需要计算损失函数对网络参数的偏导数,以便进行参数更新。由于神经网络的结构复杂且参数众多,手动计算这些偏导数是非常困难和耗时的。自动求导的引入,使得我们可以方便地计算损失函数对参数的偏导数。

在深度学习框架中,例如PyTorch或TensorFlow,自动求导功能已经内置在其中。一旦我们定义了损失函数和网络模型,然后通过反向传播算法,自动求导将会自动计算损失函数对网络参数的偏导数。在实际的训练过程中,我们只需要调用优化算法,并将这些偏导数作为梯度传递给优化算法,以更新网络参数。

总结来说,深度学习中的自动求导是一种方便快捷地计算损失函数对网络参数的偏导数的技术,它使得我们可以更加高效地训练神经网络模型。

import torchx= torch.arange(4.0)x.requires_grad_(True) #等价于 需要把梯度存储x.grad#存储的梯度在这(x关于y的导数),默认值为Noney=2*torch.dot(x,x)#dot 累积 y=2*x^2y.backward()#调用反向传播函数自动计算y关于x每个分量的梯度
x.grad#打印梯度
'''tensor([ 0.,  4.,  8., 12.]) '''x.grad==4*x
'''tensor([True, True, True, True])'''## 计算另一个函数
x.grad.zero_()#需要清零,不然会累积梯度
y = x.sum()#求x和的函数
print('y:', y)
y.backward()
print('x.grad:', x.grad)#梯度都应该为1
'''
y: tensor(6., grad_fn=<SumBackward0>)
x.grad: tensor([1., 1., 1., 1.])
'''

 非标量变量的反向传播:

# 非标量变量的反向传播
x.grad.zero_()
print('x:', x)
y = x * x#矩阵相乘
y.sum().backward()
print('x.grad:', x.grad)'''
x: tensor([0., 1., 2., 3.], requires_grad=True)
x.grad: tensor([0., 2., 4., 6.])
'''

分离计算:

#分离计算
x.grad.zero_()
y=x*x# y关于x的函数
u = y.detach()#将y转化为标量
z = u*x#z就等于 标量 乘 x ,它的梯度应该就为u
z.sum().backward()
x.grad==u'''
tensor([True, True, True, True])
'''x.grad.zero_()
y.sum().backward()
x.grad==2*x#意味着y还是关于x的函数,但是u不是
'''
tensor([True, True, True, True])
'''

python控制流的梯度计算:

#python控制流的梯度计算
def f(a):b = a * 2print(b.norm())while b.norm() < 1000:  # 求L2范数:元素平方和的平方根b = b * 2if b.sum() > 0:c = belse:c = 100 * breturn cprint('2.Python控制流的梯度计算')
a = torch.tensor(2.0)  # 初始化变量
a.requires_grad_(True)  # 1.将梯度赋给想要对其求偏导数的变量
print('a:', a)
d = f(a)  # 2.记录目标函数
print('d:', d)
d.backward()  # 3.执行目标函数的反向传播函数
print('a.grad:', a.grad)  # 4.获取梯度'''
2.Python控制流的梯度计算
a: tensor(2., requires_grad=True)
tensor(4., grad_fn=<CopyBackwards>)
d: tensor(1024., grad_fn=<MulBackward0>)
a.grad: tensor(512.)
'''

这篇关于深度学习 (自动求导)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840606

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机