【滤波跟踪】基于matlab扩展卡尔曼滤波的无人机路径跟踪【含Matlab源码 2236期】

本文主要是介绍【滤波跟踪】基于matlab扩展卡尔曼滤波的无人机路径跟踪【含Matlab源码 2236期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、EKF算法简介

扩展卡尔曼滤波是利用泰勒级数展开方法将非线性滤波问题转化成近似的线性滤波问题,利用线性滤波的理论求解非线性滤波问题的次优滤波算法。其系统的状态方程和量测方程分别如式(1)、式(2)所示:
在这里插入图片描述
式中,X(k)为n维的随机状态向量序列,Z(k)为n维的随机量测向量序列,f(k,x(k))为空气阻力,v(k)、w(k)为零均值的正态(高斯)白噪声序列,其方差分别满足:
在这里插入图片描述
协方差的一步预测为:
在这里插入图片描述
量测预测值为:
在这里插入图片描述
相应的协方差为:
在这里插入图片描述
增益为:
在这里插入图片描述
状态更新方程为:
在这里插入图片描述
协方差更新方程为:
在这里插入图片描述
式中,I为与协方差同维的单位矩阵。

二阶扩展卡尔曼滤波的泰勒展开保留到二阶项,其状态的一步预测为:
在这里插入图片描述
协方差的一步预测为:
在这里插入图片描述
量测预测值为:
在这里插入图片描述

协方差更新方程为:
在这里插入图片描述
式中,I为与协方差同维的单位矩阵。

⛄二、部分源代码

clc;clear
N=501;
T=0.1;
alpha=1/60;
% X=[0 0 0 47.8109 18.1173 47.8109 0 0 0]‘;%%%X初值
X=[10 10 10 47.8109 18.1173 47.8109 1 1 1]’;%状态向量初值
P=diag([1000;1000;1000;10;10;10;10;10;10]).^2;%%%%P初值
n=size(X,1);
% % % %
target=load(‘target.txt’);
% % % % % %
UAV1=load(‘UAV1.txt’);
UAV2=load(‘UAV2.txt’);
Xs1=UAV1(:,2);
Ys1=UAV1(:,3);
Zs1=UAV1(:,4);
Xs2=UAV2(:,2);
Ys2=UAV2(:,3);
Zs2=UAV2(:,4);
% % % % % % 量测信息
measurement=load(‘measurement.txt’);
gama1=measurement(:,2);
eta1=measurement(:,3);
gama2=measurement(:,4);
eta2=measurement(:,5);
% % % % %
v=0.3pi/180randn;
R=v^2eye(4);
% Q=diag([10;10;10;5;5;5;1;1;1]).^2;
O=zeros(3,3);
o=zeros(1,6);
I=eye(3);
E=eye(n);
% % % % % % %
%过程噪声矩阵
Q=diag([10;5;1]);
%%%
F=[I T
I (1/alpha)^2*(-1+alphaT+exp(-alphaT))I;
O I (1/alpha)
(1-exp(-alphaT))I;
O O exp(-alpha
T)I];
U=[(T2/2-(alpha*T-1+exp(-alpha*T))/alpha2)I;
(T-(1-exp(-alpha
T))/alpha)I;
(1-exp(-alpha
T))I];
G=[1/alpha2*((1-exp(-alpha*T))/alpha+alpha*T2/2-T)I;
(T-(1-exp(-alpha
T))/alpha)/alpha
I;
(1-exp(-alpha
T))/alpha
I];
% % % % 系统噪声 以下噪声导致不能收敛
% q11=1/(2alpha5)*(1-exp(-2*alpha*T)+2*alpha*T+2*alpha3T3/3-2*alpha2T^2-4alphaTexp(-alphaT));
% q12=1/(2
alpha4)*(1+exp(-2*alpha*T)-2*exp(-alpha*T)+2*alpha*T*exp(-alpha*T)-2*alpha*T+alpha2T^2);
% q13=1/(2
alpha^3)(1-2exp(-alphaT)+2alphaTexp(-alphaT));
% q22=1/(2
alpha^3)(4exp(-alphaT)-3-exp(-2alphaT)+2alphaT);
% q23=1/(2
alpha^2)(exp(-2alphaT)+1-2alphaT);
% q33=1/(2
alpha)(1-exp(-alphaT));
% Q=2alpha100^2*[q11 q12 q13;q12 q22 q23;q13 q23 q33];
% % % %
for k=1:N
%X=FX+UX(7:9)+Gw;
Z=[gama1(k) eta1(k) gama2(k) eta2(k)]';
H=cal_H(X(1),X(2),X(3),Xs1(k),Xs2(k),Ys1(k),Ys2(k),Zs1(k),Zs2(k));
X=F
X+UX(7:9);
P=F
PF’+GQG’;
K=P
H’/(HPH’+R);
Zpre=cal_Z(X(1),X(2),X(3),Xs1(k),Xs2(k),Ys1(k),Ys2(k),Zs1(k),Zs2(k));
X=X+K*(Z-Zpre);
P=(eye(9)-K*H)*P;
Xekf(k,:)=X;
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]宁倩慧,张艳兵,刘莉,陆真,郭冰陶.扩展卡尔曼滤波的目标跟踪优化算法[J].探测与控制学报. 2016,38(01)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【滤波跟踪】基于matlab扩展卡尔曼滤波的无人机路径跟踪【含Matlab源码 2236期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839543

相关文章

Nginx屏蔽服务器名称与版本信息方式(源码级修改)

《Nginx屏蔽服务器名称与版本信息方式(源码级修改)》本文详解如何通过源码修改Nginx1.25.4,移除Server响应头中的服务类型和版本信息,以增强安全性,需重新配置、编译、安装,升级时需重复... 目录一、背景与目的二、适用版本三、操作步骤修改源码文件四、后续操作提示五、注意事项六、总结一、背景与

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解