Hive SQL窗口函数实现页面统计(以腾云天下页面访问为例)

本文主要是介绍Hive SQL窗口函数实现页面统计(以腾云天下页面访问为例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

埋点数据字段为:

userid,at,sid,pid分别表示用户id,访问时间,sessionId(区分一次启动),页面id

表名为beacon

所有数据均为模拟数据

2018-07-04 11:46:37	2856	efda26adec1c3eb8	h_01
2018-07-04 11:46:47	2856	efda26adec1c3eb8	h_03
2018-07-04 11:46:54	2856	efda26adec1c3eb8	h_02
2018-07-04 11:47:04	2856	efda26adec1c3eb8	h_02
2018-07-04 11:47:39	2856	efda26adec1c3eb8	h_04
2018-07-04 11:47:39	2856	efda26adec1c3eb8	h_09
2018-07-04 11:47:39	2856	efda26adec1c3eb8	h_01
2018-07-04 11:47:39	2856	efda26adec1c3eb8	h_03
2018-07-04 11:48:40	2856	efda26adec1c3eb8	h_07
2018-07-04 12:48:13	2856	b975601de0e1c2fc	h_01
2018-07-04 12:48:40	2856	b975601de0e1c2fc	h_03
2018-07-04 12:49:07	2856	b975601de0e1c2fc	h_02
2018-07-04 12:49:52	2856	b975601de0e1c2fc	h_07
2018-07-04 12:50:02	2856	5f52c96c52c98367	h_01
2018-07-04 12:50:47	2823	5f52c96c52c98367	h_03
2018-07-04 12:51:09	2823	5f52c96c52c98367	h_02

埋点原因无法统计到最后一个页面停留时间

最终可视化效果为如下图所示

无法查看图片可直接去腾云天下官网查看http://doc.talkingdata.com/posts/522

页面停留时间:

需要按sid分组后,访问时间从小到大排序,后一条时间减去前一条时间为上一条数据里页面的停留时间,故需要用到lead函数

1.求页面受访人数,页面受访(次数|比率)

select to_date(at) date,page p,count(1) pv,count(distinct userid) uv 
from tmp 
group by to_date(at),page

  结果如下

比率:需要每个页面的pv/总的pv,这里用窗口函数sum() over()

select t.date,t.p,t.uv,t.pv,round(t.pv/sum(t.pv) over(),3)
from
(
select to_date(at) date,page p,count(1) pv,count(distinct userid) uv 
from tmp 
group by to_date(at),page
) t

结果如下:

2.求受访总时长占比,平均停留时间(使用lead函数)

select to_date(at) date,page p,
lead(page,1,'endpage') over(partition by sid order by unix_timestamp(at)) nextpage,
at at,
lead(at,1,'endat') over(partition by sid order by unix_timestamp(at)) nextat
from tmp;

结果如下:

接下来求所有页面的停留时长,并过滤掉最后一个页面(下个页面为endpage)与页面与下个页面相同的数据

受访总时长占比为:每个页面总的访问时长/所有页面总的访问时间

select p.date date,
p.p page,
round(sum(unix_timestamp(p.nextat)-unix_timestamp(p.at)) over(partition by p.p)/count(1) over(partition by p.p),3) avglen,
round(sum(unix_timestamp(p.nextat)-unix_timestamp(p.at)) over(partition by p.p)/sum(unix_timestamp(p.nextat)-unix_timestamp(p.at)) over(partition by p.date),3) rate
from
(
select to_date(at) date,
page p,lead(page,1,'endpage') over(partition by sid order by unix_timestamp(at)) nextpage,
at at,
lead(at,1,'endat') over(partition by sid order by unix_timestamp(at)) nextat
from tmp
) p
where p.p!=p.nextpage and p.nextpage!='endpage'

结果如下:

因为使用over(),页面相同的数据都一样,故去重一下

select n.date date,n.page p,n.avglen avg,n.rate rate
from
(
select p.date date,p.p page,
round(sum(unix_timestamp(p.nextat)-unix_timestamp(p.at)) over(partition by p.p)/count(1) over(partition by p.p),3) avglen,
round(sum(unix_timestamp(p.nextat)-unix_timestamp(p.at)) over(partition by p.p)/sum(unix_timestamp(p.nextat)-unix_timestamp(p.at)) over(partition by p.date),3) rate
from
(
select to_date(at) date,page p,
lead(page,1,'endpage') over(partition by sid order by unix_timestamp(at)) nextpage,
at at,
lead(at,1,'endat') over(partition by sid order by unix_timestamp(at)) nextat
from tmp
) p
where p.p!=p.nextpage and p.nextpage!='endpage'
) n
group by n.date,n.page,n.avglen,n.rate

结果如下:

:

3.求离开应用

select to_date(browsepath.time) date,browsepath.p p,
round(sum(case when browsepath.nextpage='end' then 1 else 0 end)/sum(1),3) lrate
from
(
select at time,page p,
lead(page,1,'end') over(partition by sid order by unix_timestamp(at)) nextpage
from tmp
) browsepath
where browsepath.p!=browsepath.nextpage
group by to_date(browsepath.time),browsepath.p

结果如下:

4.走向

select j.date date,j.p p,
collect_list(concat_ws('_',j.nextpage,j.rate)) l
from
(
select b.date date,b.p p,b.nextpage nextpage,
cast(b.c/sum(b.c) over(partition by b.p) as string) rate
from
(
select to_date(browsepath.time) date,
browsepath.p p,browsepath.nextpage nextpage,count(1) c
from
(
select at time,page p,
lead(page,1,'end') over(partition by sid order by unix_timestamp(at)) nextpage
from tmp
) browsepath
where browsepath.p!=browsepath.nextpage and nextpage!='end'
group by to_date(browsepath.time),browsepath.p,browsepath.nextpage
) b
) j
group by j.date,j.p

结果如下:

接下来就是把sql join一下:

select pu.date,pu.p,pu.uv,pu.pv,len.rate,len.avg,lr.lrate,lr.path
from
(
select leave.date date,leave.p p,leave.lrate lrate,browse.l path
from
(
select to_date(browsepath.time) date,browsepath.p p,
round(sum(case when browsepath.nextpage='end' then 1 else 0 end)/sum(1),3) lrate
from
(
select at time,page p,
lead(page,1,'end') over(partition by sid order by unix_timestamp(at)) nextpage
from tmp
) browsepath
where browsepath.p!=browsepath.nextpage
group by to_date(browsepath.time),browsepath.p
) leave
full join
(
select j.date date,j.p p,collect_list(concat_ws('_',j.nextpage,j.rate)) l
from
(
select b.date date,b.p p,b.nextpage nextpage,
cast(b.c/sum(b.c) over(partition by b.p) as string) rate
from
(
select to_date(browsepath.time) date,browsepath.p p,browsepath.nextpage nextpage,count(1) c
from
(
select at time,page p,
lead(page,1,'end') over(partition by sid order by unix_timestamp(at)) nextpage
from tmp
) browsepath
where browsepath.p!=browsepath.nextpage and nextpage!='end'
group by to_date(browsepath.time),browsepath.p,browsepath.nextpage
) b
) j
group by j.date,j.p
) browse
on leave.date=browse.date and leave.p=browse.p
) lr
join
(
select t.date date,t.p p,concat_ws('_',cast(t.pv as string),
cast(round(t.pv/sum(pv) over(),3) as string)) pv,t.uv uv
from
(
select to_date(at) date,page p,count(1) pv,count(distinct userid) uv 
from tmp 
group by to_date(at),page
) t
) pu
on lr.date=pu.date and lr.p=pu.p
join
(
select n.date date,n.page p,n.avglen avg,n.rate rate
from
(
select p.date date,p.p page,
round(sum(unix_timestamp(p.nextat)-unix_timestamp(p.at)) over(partition by p.p)/count(1) over(partition by p.p),3) avglen,
round(sum(unix_timestamp(p.nextat)-unix_timestamp(p.at)) over(partition by p.p)/sum(unix_timestamp(p.nextat)-unix_timestamp(p.at)) over(partition by p.date),3) rate
from
(
select to_date(at) date,page p,
lead(page,1,'endpage') over(partition by sid order by unix_timestamp(at)) nextpage,
at at,
lead(at,1,'endat') over(partition by sid order by unix_timestamp(at)) nextat
from tmp
) p
where p.p!=p.nextpage and p.nextpage!='endpage'
) n
group by n.date,n.page,n.avglen,n.rate
) len
on pu.date=len.date and pu.p=len.p;

这就ok啦,有不足的地方欢迎大家评论!

这篇关于Hive SQL窗口函数实现页面统计(以腾云天下页面访问为例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839216

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决