联邦学习在腾讯微视广告投放中的实践

2024-03-23 18:38

本文主要是介绍联邦学习在腾讯微视广告投放中的实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片

分享人:宋凯 博士

整理者:林宜蓁

导读:

本文从广告主的角度,分享联邦学习实践的经验跟思考。

先介绍业务与技术选型背景:团队项目为用户增长及成本控制,方式为广告渠道投放,投放目标分为拉新、拉活两类。

  • 拉新时,微视侧端内用户特征稀疏,而广告平台积累大量信息,但仅有有限性的oCPX标准化数据回传。

  • 拉活时,微视侧具备用户行为序列等宝贵画像数据,与广告平台特征有互补性,但又无法直接粗暴的与广告平台共享数据。

所以,希望微视侧能与广告平台侧利用双方数据,实现收益共赢,但保证数据的安全不出域。在这种背景下我们团队选择了“联邦学习”,其为多方安全合作提供了一种解决方案。

文章围绕下面五点展开:

  • 联邦学习

  • 腾讯联邦学习平台 PowerFL

  • 微视广告投放整体业务

  • 广告投放联邦学习架构

  • 建模实践和细节介绍

一、联邦学习

首先,简介联邦学习(Federated Learning,FL)的先导知识。

1. 联邦学习背景

机器学习模型都是 data-driven,但现实里数据皆为孤岛:公司与公司之间、甚至部门与部门之间无法共享数据;直接的共享会侵犯用户的隐私,也损伤公司的利益。2016年 Google 的文章以输入法 NLP 为背景,提出用安卓手机终端在本地更新模型,这篇文章一般被认为是联邦学习的开端。随即,我国微众银行、腾讯等公司也做了许多开创性的工作。

联邦学习的基本定义为:在进行机器学习的过程中,各参与方可借助其他方数据进行联合建模。各方无需直接触达他方数据资源,即数据不出本地的情况下,安全进行数据联合训练,建立共享的机器学习模型。

2. 联邦学习的两种架构

  • 中心化联邦架构:早期发展包括 Google、微众银行,皆是此类架构。由可信赖的第三方(中央服务器)负责加密策略、模型分发、梯度聚合等。

  • 去中心化联邦架构:有时双方合作,找不到可信赖的第三方,各方需参与对等计算。此架构需要更多的加解密和参数传输操作,比如:n方参与时,需进行2n(n-1)次传输。这里可以认为加解密算法实际上扮演了第三方的角色。

3. 联邦学习的三种分类

  • 横向联邦学习:样本的联合,适用于特征重叠多,用户重叠少时的场景。比如:两个业务相似的公司,用户正交多但画像相似,可进行横向联邦学习,更像是一种数据变形的分布式机器学习。

  • 纵向联邦学习:特征的联合,适用于用户重叠多,特征重叠少时的场景。比如:广告主与广告平台,希望结合两方的特征进行训练。

  • 联邦迁移学习:参与者间的特征和样本重叠都很少时,可以考虑使用,但难度较高。

三种联邦学习交互的信息有异,受到的困扰也不同;比如:横向联邦学习时,各参与方数据异构,因此数据非独立同分布,也是联邦学习的研究热点。

目前纵向联邦学习已在我们业务中落地,也在探索联邦迁移学习、横向纵向的结合。

图片

4. 联邦学习与分布式机器学习比较

精度上界:联邦学习不像优化其他具体的排序、召回模型,更像是在数据安全限制下,去推动整个建模。所以,理论上把共享数据下分布式机器学习(Distributed Machine Learning,DML)的结果作为上限。

联邦学习(FL)与分布式机器学习(DML)比较

虽然有人把联邦学习作为一种分布式机器学习的特殊情况,但是与一般的DML相比,联邦学习仍存在如下区别:

  • 存在数据不共享的限制;

  • 各server节点对worker节点控制弱;

  • 通讯频率和成本较高。

二、腾讯联邦学习平台Angel PowerFL

从联邦学习发展开始,腾讯参与度就非常高。包括:制定发布《联邦学习白皮书2.0》、《腾讯安全联邦学习应用服务白皮书》等;基建方面,基于腾讯开源的智能学习平台Angel(https://github.com/Angel-ML/angel),构建PowerFL,目前内部开源;实践方面,在金融、广告、推荐场景,有多次尝试和落地。

1. 工程特色

腾讯联邦学习平台PowerFL除了易部署、兼容性好等机器学习平台基本要求,还有以下五个工程特色:

  • 学习架构:使用去中心化联邦架构,不依赖第三方;

  • 加密算法:实现并改进了各种常见的同态加密、对称和非对称加密算法;

  • 分布式计算:基于 Spark on Angel 的分布式机器学习框架;

  • 跨网络通信:利用 Pulsar 对跨网通信优化,增强稳定性,提供多方跨网络传输接口;

  • 可信赖执行环境:TEE(SGX等)的探索和支持。

2. 算法优化

另外,针对算法侧也做了许多优化:

  • 密文运算重写:基于 C++ GMP 重写密文运算库;

  • 数据求交优化:分别就双方和多方优化,特别是多方侧进行了理论上的改造(改进的 FNP 协议);

  • GP

这篇关于联邦学习在腾讯微视广告投放中的实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839187

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro