联邦学习在腾讯微视广告投放中的实践

2024-03-23 18:38

本文主要是介绍联邦学习在腾讯微视广告投放中的实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片

分享人:宋凯 博士

整理者:林宜蓁

导读:

本文从广告主的角度,分享联邦学习实践的经验跟思考。

先介绍业务与技术选型背景:团队项目为用户增长及成本控制,方式为广告渠道投放,投放目标分为拉新、拉活两类。

  • 拉新时,微视侧端内用户特征稀疏,而广告平台积累大量信息,但仅有有限性的oCPX标准化数据回传。

  • 拉活时,微视侧具备用户行为序列等宝贵画像数据,与广告平台特征有互补性,但又无法直接粗暴的与广告平台共享数据。

所以,希望微视侧能与广告平台侧利用双方数据,实现收益共赢,但保证数据的安全不出域。在这种背景下我们团队选择了“联邦学习”,其为多方安全合作提供了一种解决方案。

文章围绕下面五点展开:

  • 联邦学习

  • 腾讯联邦学习平台 PowerFL

  • 微视广告投放整体业务

  • 广告投放联邦学习架构

  • 建模实践和细节介绍

一、联邦学习

首先,简介联邦学习(Federated Learning,FL)的先导知识。

1. 联邦学习背景

机器学习模型都是 data-driven,但现实里数据皆为孤岛:公司与公司之间、甚至部门与部门之间无法共享数据;直接的共享会侵犯用户的隐私,也损伤公司的利益。2016年 Google 的文章以输入法 NLP 为背景,提出用安卓手机终端在本地更新模型,这篇文章一般被认为是联邦学习的开端。随即,我国微众银行、腾讯等公司也做了许多开创性的工作。

联邦学习的基本定义为:在进行机器学习的过程中,各参与方可借助其他方数据进行联合建模。各方无需直接触达他方数据资源,即数据不出本地的情况下,安全进行数据联合训练,建立共享的机器学习模型。

2. 联邦学习的两种架构

  • 中心化联邦架构:早期发展包括 Google、微众银行,皆是此类架构。由可信赖的第三方(中央服务器)负责加密策略、模型分发、梯度聚合等。

  • 去中心化联邦架构:有时双方合作,找不到可信赖的第三方,各方需参与对等计算。此架构需要更多的加解密和参数传输操作,比如:n方参与时,需进行2n(n-1)次传输。这里可以认为加解密算法实际上扮演了第三方的角色。

3. 联邦学习的三种分类

  • 横向联邦学习:样本的联合,适用于特征重叠多,用户重叠少时的场景。比如:两个业务相似的公司,用户正交多但画像相似,可进行横向联邦学习,更像是一种数据变形的分布式机器学习。

  • 纵向联邦学习:特征的联合,适用于用户重叠多,特征重叠少时的场景。比如:广告主与广告平台,希望结合两方的特征进行训练。

  • 联邦迁移学习:参与者间的特征和样本重叠都很少时,可以考虑使用,但难度较高。

三种联邦学习交互的信息有异,受到的困扰也不同;比如:横向联邦学习时,各参与方数据异构,因此数据非独立同分布,也是联邦学习的研究热点。

目前纵向联邦学习已在我们业务中落地,也在探索联邦迁移学习、横向纵向的结合。

图片

4. 联邦学习与分布式机器学习比较

精度上界:联邦学习不像优化其他具体的排序、召回模型,更像是在数据安全限制下,去推动整个建模。所以,理论上把共享数据下分布式机器学习(Distributed Machine Learning,DML)的结果作为上限。

联邦学习(FL)与分布式机器学习(DML)比较

虽然有人把联邦学习作为一种分布式机器学习的特殊情况,但是与一般的DML相比,联邦学习仍存在如下区别:

  • 存在数据不共享的限制;

  • 各server节点对worker节点控制弱;

  • 通讯频率和成本较高。

二、腾讯联邦学习平台Angel PowerFL

从联邦学习发展开始,腾讯参与度就非常高。包括:制定发布《联邦学习白皮书2.0》、《腾讯安全联邦学习应用服务白皮书》等;基建方面,基于腾讯开源的智能学习平台Angel(https://github.com/Angel-ML/angel),构建PowerFL,目前内部开源;实践方面,在金融、广告、推荐场景,有多次尝试和落地。

1. 工程特色

腾讯联邦学习平台PowerFL除了易部署、兼容性好等机器学习平台基本要求,还有以下五个工程特色:

  • 学习架构:使用去中心化联邦架构,不依赖第三方;

  • 加密算法:实现并改进了各种常见的同态加密、对称和非对称加密算法;

  • 分布式计算:基于 Spark on Angel 的分布式机器学习框架;

  • 跨网络通信:利用 Pulsar 对跨网通信优化,增强稳定性,提供多方跨网络传输接口;

  • 可信赖执行环境:TEE(SGX等)的探索和支持。

2. 算法优化

另外,针对算法侧也做了许多优化:

  • 密文运算重写:基于 C++ GMP 重写密文运算库;

  • 数据求交优化:分别就双方和多方优化,特别是多方侧进行了理论上的改造(改进的 FNP 协议);

  • GP

这篇关于联邦学习在腾讯微视广告投放中的实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839187

相关文章

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL 用户创建与授权最佳实践

《MySQL用户创建与授权最佳实践》在MySQL中,用户管理和权限控制是数据库安全的重要组成部分,下面详细介绍如何在MySQL中创建用户并授予适当的权限,感兴趣的朋友跟随小编一起看看吧... 目录mysql 用户创建与授权详解一、MySQL用户管理基础1. 用户账户组成2. 查看现有用户二、创建用户1. 基

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源