LeetCode:2617. 网格图中最少访问的格子数(优先级队列 Java)

2024-03-23 18:04

本文主要是介绍LeetCode:2617. 网格图中最少访问的格子数(优先级队列 Java),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

2617. 网格图中最少访问的格子数

题目描述:

实现代码与解析:

优先级队列

原理思路:


2617. 网格图中最少访问的格子数

题目描述:

        给你一个下标从 0 开始的 m x n 整数矩阵 grid 。你一开始的位置在 左上角 格子 (0, 0) 。

当你在格子 (i, j) 的时候,你可以移动到以下格子之一:

  • 满足 j < k <= grid[i][j] + j 的格子 (i, k) (向右移动),或者
  • 满足 i < k <= grid[i][j] + i 的格子 (k, j) (向下移动)。

请你返回到达 右下角 格子 (m - 1, n - 1) 需要经过的最少移动格子数,如果无法到达右下角格子,请你返回 -1 。

示例 1:

输入:grid = [[3,4,2,1],[4,2,3,1],[2,1,0,0],[2,4,0,0]]
输出:4
解释:上图展示了到达右下角格子经过的 4 个格子。

示例 2:

输入:grid = [[3,4,2,1],[4,2,1,1],[2,1,1,0],[3,4,1,0]]
输出:3
解释:上图展示了到达右下角格子经过的 3 个格子。

示例 3:

输入:grid = [[2,1,0],[1,0,0]]
输出:-1
解释:无法到达右下角格子。

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 105
  • 1 <= m * n <= 105
  • 0 <= grid[i][j] < m * n
  • grid[m - 1][n - 1] == 0

实现代码与解析:

优先级队列

import java.util.Arrays;
import java.util.PriorityQueue;class Solution {public int minimumVisitedCells(int[][] grid) {int n = grid.length, m = grid[0].length;int[][] d = new int[n][m]; // 到每个单元格的步数// 初始化for (int i = 0; i < n; i++) {Arrays.fill(d[i], -1);}// int[0] 步数 int[1] 行或列号,行堆存的列号,列堆存的行号,确定位置PriorityQueue<int[]>[] pqrs = new PriorityQueue[n]; // pq rowsPriorityQueue<int[]>[] pqcs = new PriorityQueue[m]; // pq colsfor (int i = 0; i < n; i++) {pqrs[i] = new PriorityQueue<>((a, b) -> a[0] - b[0]); // 小根堆,按到该位置的步数}for (int i = 0; i < m; i++) {pqcs[i] = new PriorityQueue<>((a, b) -> a[0] - b[0]);}d[0][0] = 1; // 起始for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {// 行// 不能到i, j的弹出直接,因为不能一步到,剩下的同行格更不可能一步到while (!pqrs[i].isEmpty() && grid[i][pqrs[i].peek()[1]] + pqrs[i].peek()[1] < j) {pqrs[i].poll();}// 如果最后行堆中有剩余,堆顶就是我们当前单元格的一个方向的答案,比较取最小,当然在-1时直接赋值即可if (!pqrs[i].isEmpty()) {d[i][j] = d[i][j] == -1 || d[i][pqrs[i].peek()[1]] + 1 < d[i][j] ? d[i][pqrs[i].peek()[1]] + 1 : d[i][j];}// 列while (!pqcs[j].isEmpty() && pqcs[j].peek()[1] + grid[pqcs[j].peek()[1]][j] < i) {pqcs[j].poll();}if (!pqcs[j].isEmpty()) {d[i][j] = d[i][j] == -1 || d[pqcs[j].peek()[1]][j] + 1 < d[i][j] ? d[pqcs[j].peek()[1]][j] + 1 : d[i][j];}// 如果可以到达,加入到堆中if (d[i][j] != -1) {pqrs[i].offer(new int[]{d[i][j], j});pqcs[j].offer(new int[]{d[i][j], i});}}}return d[n - 1][m - 1];}
}

原理思路:

        其实就是dp,只不过这里走的条件是和格内值和位置决定,所有需要额外数据结构来维护。

        进行遍历,由于只能从左和上而来,所以我们正常从左向右遍历,为了找出可以到达i,j的格子,我们用优先级队列(小堆)来维护每一行和每一列,里面存放两个值,一个到i,j的步数(用于堆的排序,),一个为单元格内的值d[i][j](用于判断能否到达当前单元格)。

        开始遍历,拿行举例,先把行堆内不能到达该单元格的弹出,因为如果不能一步到达,说明至少需要两步,而左侧单元格已经进行计算过了,如果两步可以到达当前单元格,那么前面一定存在可以一步到达的单元格(不过不一定是该答案,因为也许有比它步数还小的把这个单元格更新了,当然它肯定在堆中),所以直接弹出即可。

       如果最后堆中都被弹出了,说明在水平方向,无法到达该单元格,如果还有元素,堆顶就是该单元格行方向上的最小步数(小顶堆),进行比较取小的然后更新。因为我们初始化-1为不能到达,所以如果单元格内为-1,就不比较了,直接赋值。

        列也同理。最后把当前单元格信息放入堆中为后面的单元格更新作为条件即可。

        最后求出d[n -1][m-1]。

这篇关于LeetCode:2617. 网格图中最少访问的格子数(优先级队列 Java)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839109

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与

Java.lang.InterruptedException被中止异常的原因及解决方案

《Java.lang.InterruptedException被中止异常的原因及解决方案》Java.lang.InterruptedException是线程被中断时抛出的异常,用于协作停止执行,常见于... 目录报错问题报错原因解决方法Java.lang.InterruptedException 是 Jav

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We