简述最小二乘法基本概念和拟合方法,给出高次函数的拟合公式,配有有matlab仿真程序

本文主要是介绍简述最小二乘法基本概念和拟合方法,给出高次函数的拟合公式,配有有matlab仿真程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小二乘法是一种常用的曲线拟合算法,尤其对于存在白噪声的数据的拟合尤其有用。本文首先简析最小二乘法的作用,然后再推到高次(以3次为例)多项式的拟合公式,并用MATLAB仿真展示具体的应用示例。

一、最小二乘法的用途

最小二乘法是一种常用的曲线拟合算法,尤其对于存在白噪声的数据的拟合尤其有用。有效估计就是具有最小方差的估计,最小二乘法是一种对于物理量参数的有效估计,这种方法综合考虑所有点的偏差,所评估的参数使得对于所有的测量点方差最小。

二、高次多项式的拟合公式推导

假设需要使用最小二乘法对一个3次函数进行拟合,该函数的真值表达式如下:

y=ax^{3}+bx^{2}+cx+d

在实际应用中,x作为输入,在测量输出y时,往往会引入白噪声V_{x},这样实际在测量数据时表达式变为:

y=ax^{3}+bx^{2}+cx+d+V_{x}

现在给定一组输入值X_{i}=[{x_{1},x_{2},x_{3},..,x_{n}}],会得到含有白噪声的一组测量值Y_{i}=[y_{1},y_{2},y_{3},...],由输入值X_{i}和测量值Y_{i},使用最小二乘法对a,b,c,d四个参数进行估计。

根据最小二乘法的定义,使得

J=\sum_{i=1}^{N}[y_{i}-(ax_{i}^{3}+bx_{i}^{2}+cx_{i}+d))]^{2}为最小。

为此,需要分别对a,b,c,d四个参数求偏导数,并令其为0,即可得到一个线性方程组,如下:

\frac{\partial J}{\partial a}|_{a=\hat{a}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})x_{i}^{3}=0

\frac{\partial J}{\partial b}|_{b=\hat{b}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})x_{i}^{2}=0

\frac{\partial J}{\partial c}|_{c=\hat{c}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})x_{i}=0

\frac{\partial J}{\partial d}|_{d=\hat{d}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})=0

对以上四个线性方程整理可得:

\hat{a}\sum_{i=1}^{N}x_{i}^{6}+\hat{b}\sum_{i=1}^{N}x_{i}^{5}+\hat{c}\sum_{i=1}^{N}x_{i}^{4}+\hat{d}\sum_{i=1}^{N}x_{i}^{3}=\sum_{i=1}^{N}y_{i}x_{i}^{3}

\hat{a}\sum_{i=1}^{N}x_{i}^{5}+\hat{b}\sum_{i=1}^{N}x_{i}^{4}+\hat{c}\sum_{i=1}^{N}x_{i}^{3}+\hat{d}\sum_{i=1}^{N}x_{i}^{2}=\sum_{i=1}^{N}y_{i}x_{i}^{2}

\hat{a}\sum_{i=1}^{N}x_{i}^{4}+\hat{b}\sum_{i=1}^{N}x_{i}^{3}+\hat{c}\sum_{i=1}^{N}x_{i}^{2}+\hat{d}\sum_{i=1}^{N}x_{i}=\sum_{i=1}^{N}y_{i}x_{i}

\hat{a}\sum_{i=1}^{N}x_{i}^{3}+\hat{b}\sum_{i=1}^{N}x_{i}^{2}+\hat{c}\sum_{i=1}^{N}x+\hat{d}N=\sum_{i=1}^{N}y_{i}

写成矩阵的形式可得:

\begin{bmatrix} \sum_{i=1}^{N}x_{i}^{6} & \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3}\\ \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2}\\ \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i}\\ \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i} & N \end{bmatrix}\begin{bmatrix} \hat{a}\\ \hat{b}\\ \hat{c}\\ \hat{d} \end{bmatrix}=\begin{bmatrix} \sum_{i=1}^{N}y_{i}x_{i}^{3}\\ \sum_{i=1}^{N}y_{i}x_{i}^{2}\\ \sum_{i=1}^{N}y_{i}x_{i}\\ \sum_{i=1}^{N}y_{i} \end{bmatrix}

A=\begin{bmatrix} \sum_{i=1}^{N}x_{i}^{6} & \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3}\\ \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2}\\ \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i}\\ \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i} & N \end{bmatrix},B=\begin{bmatrix} \hat{a}\\ \hat{b}\\ \hat{c}\\ \hat{d} \end{bmatrix},C=\begin{bmatrix} \sum_{i=1}^{N}y_{i}x_{i}^{3}\\ \sum_{i=1}^{N}y_{i}x_{i}^{2}\\ \sum_{i=1}^{N}y_{i}x_{i}\\ \sum_{i=1}^{N}y_{i} \end{bmatrix}

可简化写成,A*B=C,于是可得估计参数如下:

B=A^{-1}*C

三、Matlab代码仿真

根据上面推导的公式,对一个3次函数进行参数辨识,以证明该公式的有效性。

需要辨识的三次函数如下:

y=0.5x^3+1.2x^2+2x+5

辨识时对该三次函数加入10*[-0.5,0.5]范围的白噪声。matlab代码实现如下:

clc
clear
close all
X_6_sum=0;X_5_sum=0;X_4_sum=0;X_3_sum=0;X_2_sum=0;X_1_sum=0;
RX_3_sum=0;RX_2_sum=0;RX_1_sum=0;
R_sum=0;N=0;
X=-10:0.01:10;
Y=X;
for count=1:length(X)Y(count)=0.5*X(count)^3+1.2*X(count)^2+2*X(count)+5+10*(rand()-0.5);X_6_sum=X_6_sum+X(count)^6;X_5_sum=X_5_sum+X(count)^5;X_4_sum=X_4_sum+X(count)^4;X_3_sum=X_3_sum+X(count)^3;X_2_sum=X_2_sum+X(count)^2;X_1_sum=X_1_sum+X(count);N=length(X);RX_3_sum=RX_3_sum+Y(count)*X(count)^3;RX_2_sum=RX_2_sum+Y(count)*X(count)^2;RX_1_sum=RX_1_sum+Y(count)*X(count);R_sum=R_sum+Y(count);   
end
plot(X,Y,'b.','MarkerSize',10);
A=[X_6_sum,X_5_sum,X_4_sum,X_3_sum;X_5_sum,X_4_sum,X_3_sum,X_2_sum;X_4_sum,X_3_sum,X_2_sum,X_1_sum;X_3_sum,X_2_sum,X_1_sum,N];
C=[RX_3_sum;RX_2_sum;RX_1_sum;R_sum];
B=inv(A)*C
B1=polyfit(X,Y,3)
Y1=B(1).*X.^3+B(2).*X.^2+B(3).*X+B(4);
hold on
plot(X,Y1,'r','MarkerSize',10);

仿真结果如下:

 其中B为采用上述公式得到的拟合结果,B1为采用matlab自带的函数进行的拟合得到的结果,两者对比可证明结果是一致的,并且和设定的真实参数相差很小,从而证明该公式的正确性。

这篇关于简述最小二乘法基本概念和拟合方法,给出高次函数的拟合公式,配有有matlab仿真程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/838813

相关文章

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

AOP编程的基本概念与idea编辑器的配合体验过程

《AOP编程的基本概念与idea编辑器的配合体验过程》文章简要介绍了AOP基础概念,包括Before/Around通知、PointCut切入点、Advice通知体、JoinPoint连接点等,说明它们... 目录BeforeAroundAdvise — 通知PointCut — 切入点Acpect — 切面