简述最小二乘法基本概念和拟合方法,给出高次函数的拟合公式,配有有matlab仿真程序

本文主要是介绍简述最小二乘法基本概念和拟合方法,给出高次函数的拟合公式,配有有matlab仿真程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小二乘法是一种常用的曲线拟合算法,尤其对于存在白噪声的数据的拟合尤其有用。本文首先简析最小二乘法的作用,然后再推到高次(以3次为例)多项式的拟合公式,并用MATLAB仿真展示具体的应用示例。

一、最小二乘法的用途

最小二乘法是一种常用的曲线拟合算法,尤其对于存在白噪声的数据的拟合尤其有用。有效估计就是具有最小方差的估计,最小二乘法是一种对于物理量参数的有效估计,这种方法综合考虑所有点的偏差,所评估的参数使得对于所有的测量点方差最小。

二、高次多项式的拟合公式推导

假设需要使用最小二乘法对一个3次函数进行拟合,该函数的真值表达式如下:

y=ax^{3}+bx^{2}+cx+d

在实际应用中,x作为输入,在测量输出y时,往往会引入白噪声V_{x},这样实际在测量数据时表达式变为:

y=ax^{3}+bx^{2}+cx+d+V_{x}

现在给定一组输入值X_{i}=[{x_{1},x_{2},x_{3},..,x_{n}}],会得到含有白噪声的一组测量值Y_{i}=[y_{1},y_{2},y_{3},...],由输入值X_{i}和测量值Y_{i},使用最小二乘法对a,b,c,d四个参数进行估计。

根据最小二乘法的定义,使得

J=\sum_{i=1}^{N}[y_{i}-(ax_{i}^{3}+bx_{i}^{2}+cx_{i}+d))]^{2}为最小。

为此,需要分别对a,b,c,d四个参数求偏导数,并令其为0,即可得到一个线性方程组,如下:

\frac{\partial J}{\partial a}|_{a=\hat{a}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})x_{i}^{3}=0

\frac{\partial J}{\partial b}|_{b=\hat{b}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})x_{i}^{2}=0

\frac{\partial J}{\partial c}|_{c=\hat{c}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})x_{i}=0

\frac{\partial J}{\partial d}|_{d=\hat{d}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})=0

对以上四个线性方程整理可得:

\hat{a}\sum_{i=1}^{N}x_{i}^{6}+\hat{b}\sum_{i=1}^{N}x_{i}^{5}+\hat{c}\sum_{i=1}^{N}x_{i}^{4}+\hat{d}\sum_{i=1}^{N}x_{i}^{3}=\sum_{i=1}^{N}y_{i}x_{i}^{3}

\hat{a}\sum_{i=1}^{N}x_{i}^{5}+\hat{b}\sum_{i=1}^{N}x_{i}^{4}+\hat{c}\sum_{i=1}^{N}x_{i}^{3}+\hat{d}\sum_{i=1}^{N}x_{i}^{2}=\sum_{i=1}^{N}y_{i}x_{i}^{2}

\hat{a}\sum_{i=1}^{N}x_{i}^{4}+\hat{b}\sum_{i=1}^{N}x_{i}^{3}+\hat{c}\sum_{i=1}^{N}x_{i}^{2}+\hat{d}\sum_{i=1}^{N}x_{i}=\sum_{i=1}^{N}y_{i}x_{i}

\hat{a}\sum_{i=1}^{N}x_{i}^{3}+\hat{b}\sum_{i=1}^{N}x_{i}^{2}+\hat{c}\sum_{i=1}^{N}x+\hat{d}N=\sum_{i=1}^{N}y_{i}

写成矩阵的形式可得:

\begin{bmatrix} \sum_{i=1}^{N}x_{i}^{6} & \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3}\\ \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2}\\ \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i}\\ \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i} & N \end{bmatrix}\begin{bmatrix} \hat{a}\\ \hat{b}\\ \hat{c}\\ \hat{d} \end{bmatrix}=\begin{bmatrix} \sum_{i=1}^{N}y_{i}x_{i}^{3}\\ \sum_{i=1}^{N}y_{i}x_{i}^{2}\\ \sum_{i=1}^{N}y_{i}x_{i}\\ \sum_{i=1}^{N}y_{i} \end{bmatrix}

A=\begin{bmatrix} \sum_{i=1}^{N}x_{i}^{6} & \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3}\\ \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2}\\ \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i}\\ \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i} & N \end{bmatrix},B=\begin{bmatrix} \hat{a}\\ \hat{b}\\ \hat{c}\\ \hat{d} \end{bmatrix},C=\begin{bmatrix} \sum_{i=1}^{N}y_{i}x_{i}^{3}\\ \sum_{i=1}^{N}y_{i}x_{i}^{2}\\ \sum_{i=1}^{N}y_{i}x_{i}\\ \sum_{i=1}^{N}y_{i} \end{bmatrix}

可简化写成,A*B=C,于是可得估计参数如下:

B=A^{-1}*C

三、Matlab代码仿真

根据上面推导的公式,对一个3次函数进行参数辨识,以证明该公式的有效性。

需要辨识的三次函数如下:

y=0.5x^3+1.2x^2+2x+5

辨识时对该三次函数加入10*[-0.5,0.5]范围的白噪声。matlab代码实现如下:

clc
clear
close all
X_6_sum=0;X_5_sum=0;X_4_sum=0;X_3_sum=0;X_2_sum=0;X_1_sum=0;
RX_3_sum=0;RX_2_sum=0;RX_1_sum=0;
R_sum=0;N=0;
X=-10:0.01:10;
Y=X;
for count=1:length(X)Y(count)=0.5*X(count)^3+1.2*X(count)^2+2*X(count)+5+10*(rand()-0.5);X_6_sum=X_6_sum+X(count)^6;X_5_sum=X_5_sum+X(count)^5;X_4_sum=X_4_sum+X(count)^4;X_3_sum=X_3_sum+X(count)^3;X_2_sum=X_2_sum+X(count)^2;X_1_sum=X_1_sum+X(count);N=length(X);RX_3_sum=RX_3_sum+Y(count)*X(count)^3;RX_2_sum=RX_2_sum+Y(count)*X(count)^2;RX_1_sum=RX_1_sum+Y(count)*X(count);R_sum=R_sum+Y(count);   
end
plot(X,Y,'b.','MarkerSize',10);
A=[X_6_sum,X_5_sum,X_4_sum,X_3_sum;X_5_sum,X_4_sum,X_3_sum,X_2_sum;X_4_sum,X_3_sum,X_2_sum,X_1_sum;X_3_sum,X_2_sum,X_1_sum,N];
C=[RX_3_sum;RX_2_sum;RX_1_sum;R_sum];
B=inv(A)*C
B1=polyfit(X,Y,3)
Y1=B(1).*X.^3+B(2).*X.^2+B(3).*X+B(4);
hold on
plot(X,Y1,'r','MarkerSize',10);

仿真结果如下:

 其中B为采用上述公式得到的拟合结果,B1为采用matlab自带的函数进行的拟合得到的结果,两者对比可证明结果是一致的,并且和设定的真实参数相差很小,从而证明该公式的正确性。

这篇关于简述最小二乘法基本概念和拟合方法,给出高次函数的拟合公式,配有有matlab仿真程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/838813

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优