深度学习论文随记(四)ResNet 残差网络-2015年Deep Residual Learning for Image Recognition

本文主要是介绍深度学习论文随记(四)ResNet 残差网络-2015年Deep Residual Learning for Image Recognition,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



深度学习论文随记(四)ResNet 残差网络

DeepResidual Learning for Image Recognition

Author:Kaiming He,  XiangyuZhang,  Shaoqing Ren,  Jian Sun,

 Microsoft Research

Year:2015


1、导引

之前文章谈到GoogLeNet和VGG,人们开始认为增加网络的层数,即让网络变深似乎能进一步提高分类任务的准确性。于是,微软研究院的何凯明团队提出了这样一个问题:

Is learning better networks as easy as stacking more layers?

然后他们通过增加层数就发现一个奇怪的现象:

When deeper networks areable to start converging, adegradationproblem has been exposed:

网络加深了, accuracy却下降了。如上图20-layer和50-layer的对比图所示,第20层网络相比,第56层网络存在更高的训练误差与测试误差。这个问题称为degradation。并且,他们发现这个问题is not caused by overfitting. 所以degradation问题说明不是所有网络都那么容易优化。

正因如此,他们提出了残差网络的idea. 构建了Deep Residual Net

然后在2015年的各类比赛中,他们取得了如下成果。


然后大家可以感受一下深度学习网络的“深度革命”

在ILSVRC2010年左右还主要是浅层网络,大部分需要手动调教特征。在ILSVRC2012年时,出现了8层的网络——AlexNet,降低了10%的错误率。而后ILSVRC2014出现的VGG和GoogleNet是相当成功的,它们分别将层级提到了19层、22,错误率也降低到了7.3、6.7。到ILSVRC2015, ResNet将层级提到了152,将错误率降到了3.57。


2、模型分析

通过在输出个输入之间引入一个shortcut connection,而不是简单的堆叠网络,这样可以解决网络由于很深出现梯度消失的问题,从而可可以把网络做的很深。


实际中,考虑计算的成本,对残差块做了计算优化,即将两个3x3的卷积层替换为1x1 + 3x3 + 1x1, 如下图。新结构中的中间3x3的卷积层首先在一个降维1x1卷积层下减少了计算,然后在另一个1x1的卷积层下做了还原,既保持了精度又减少了计算量。


3、特点分析

在ImageNet上进行了综合性实验展示精准度下降问题,并对他们的方法做出评估。发现:

 

(1)特别深的残差网络很容易优化,但当深度增加时对应的“平面”网(即简单的堆栈层)表现出更高的训练误差。

(2)深度残差网络能够在大大增加深度的同时获得高精准度,产生的结果本质上优于以前的网络。

 

公式F(x)+x可以通过“快捷连接”前馈神经网络实现。

快捷连接是那些跳过中的一层或更多层。在我们的情景中,快捷连接简单的执行身份映射,并将它们的输出添加到叠加层的输出。身份快捷连接添加既不产生额外的参数,也会增加不计算的复杂度。




这篇关于深度学习论文随记(四)ResNet 残差网络-2015年Deep Residual Learning for Image Recognition的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837459

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio