linux 虚拟内存一角

2024-03-23 04:38
文章标签 linux 虚拟内存 一角

本文主要是介绍linux 虚拟内存一角,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当你运行一个程序,程序中有许多东西需要存储,堆、栈以及各种功能库。而这一切在你写程序时可能都不需要自己控制,Linux内核会帮你完成这些存储的调度,你只需要告诉它你需要做什么,内核就会在合适的地方给你分配内存空间。本文主要通过几个实例程序的内存使用研究,来为大家展示Linux的内存使用状况。

第一个例子:下面一段程序会打印出程序的pid(进程号)后挂起。

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>int main() {printf("run `pmap %d`\n", getpid());pause();
}

将上面代码保存成文件 mem_munch.c 然后运行下面程序编译并执行:

$ gcc mem_munch.c -o mem_munch
$ ./mem_munch
run `pmap 25681`

上面进程号是25681,可能你试验的结果会不太一样。

下面我们通过pmap命令来查看一下这个小程序的内存使用情况

$ pmap 25681
25681:   ./mem_munch
0000000000400000      4K r-x--  /home/user/mem_munch
0000000000600000      4K r----  /home/user/mem_munch
0000000000601000      4K rw---  /home/user/mem_munch
00007fcf5af88000   1576K r-x--  /lib/x86_64-linux-gnu/libc-2.13.so
00007fcf5b112000   2044K -----  /lib/x86_64-linux-gnu/libc-2.13.so
00007fcf5b311000     16K r----  /lib/x86_64-linux-gnu/libc-2.13.so
00007fcf5b315000      4K rw---  /lib/x86_64-linux-gnu/libc-2.13.so
00007fcf5b316000     24K rw---    [ anon ]
00007fcf5b31c000    132K r-x--  /lib/x86_64-linux-gnu/ld-2.13.so
00007fcf5b512000     12K rw---    [ anon ]
00007fcf5b539000     12K rw---    [ anon ]
00007fcf5b53c000      4K r----  /lib/x86_64-linux-gnu/ld-2.13.so
00007fcf5b53d000      8K rw---  /lib/x86_64-linux-gnu/ld-2.13.so
00007fff7efd8000    132K rw---    [ stack ]
00007fff7efff000      4K r-x--    [ anon ]
ffffffffff600000      4K r-x--    [ anon ]total             3984K

上面的结果是这个程序的内存使用情况,其实更确切的说是这个程序认为它使用内存的情况。从上面的结果我们能看到,当你访问libc库时,实际上是对内存地址00007fcf5af88000的访问,当你访问ld库时,实际上是对内存地址00007fcf5b31c000的访问。

上面的输出可能还比较抽象,下面我们修改一下上面的程序,我们在程序的堆和栈上各放一块数据。

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <stdlib.h>int main() {int on_stack, *on_heap;//局部变量是放在栈上的,所以 on_stack 的地址就是栈的初始地址on_stack = 42;printf("stack address: %p\n", &on_stack);//malloc 的内存是在堆上分配的on_heap = (int*)malloc(sizeof(int));printf("heap address: %p\n", on_heap);printf("run `pmap %d`\n", getpid());pause();
}

编译运行:

$ ./mem_munch
stack address: 0x7fff497670bc
heap address: 0x1b84010
run `pmap 11972`

然后再用pmap命令查看一下内存使用:

$ pmap 11972
11972:   ./mem_munch
0000000000400000      4K r-x--  /home/user/mem_munch
0000000000600000      4K r----  /home/user/mem_munch
0000000000601000      4K rw---  /home/user/mem_munch
0000000001b84000    132K rw---    [ anon ]
00007f3ec4d98000   1576K r-x--  /lib/x86_64-linux-gnu/libc-2.13.so
00007f3ec4f22000   2044K -----  /lib/x86_64-linux-gnu/libc-2.13.so
00007f3ec5121000     16K r----  /lib/x86_64-linux-gnu/libc-2.13.so
00007f3ec5125000      4K rw---  /lib/x86_64-linux-gnu/libc-2.13.so
00007f3ec5126000     24K rw---    [ anon ]
00007f3ec512c000    132K r-x--  /lib/x86_64-linux-gnu/ld-2.13.so
00007f3ec5322000     12K rw---    [ anon ]
00007f3ec5349000     12K rw---    [ anon ]
00007f3ec534c000      4K r----  /lib/x86_64-linux-gnu/ld-2.13.so
00007f3ec534d000      8K rw---  /lib/x86_64-linux-gnu/ld-2.13.so
00007fff49747000    132K rw---    [ stack ]
00007fff497bb000      4K r-x--    [ anon ]
ffffffffff600000      4K r-x--    [ anon ]total             4116K

这次多出了上面红色的一行内容,红色内容就是堆的起始位置:

0000000001b84000    132K rw---    [ anon ]

在我们程序运行的输出里也有一行红色的输出,这是这个地址在程序中的内存地址:

heap address: 0x1b84010

这两个地址基本上是一样的,其中的anon是Anonymous的缩写,表明这段内存是没有文件映射的。

我们再看上面绿色的两行,与上面相对应,这两行分别是用pmap 和应用程序看到的栈起始地址:

00007fff49747000    132K rw---    [ stack ]
stack address: 0x7fff497670bc

上面说到的内存使用,都只是程序认为自己对内存的使用,实际上程序在分配内存是不知道系统内存的状态的。所以上面的输出都只是从程序自己的角度看到的内存使用状况。比如在上面的例子中,我们看到程序的内存地址空间是从0×0000000000400000到0xffffffffff600000的所有地址(而0xffffffffff600000到0×00007fffffffffffffff之间的地址是有特殊用处的,这里不多讲)。这样算下来,我们总共可以使用的内存空间有1千万TB。

但是实际上目前没有硬件能有1千万TB的物理内存。为什么操作系统会如此设计呢?原因有很多,可以看这里,但也正因此,我们可以使用远远超出物理内存大小的内存空间。

内存映射

内存映射的原理就是让操作系统将一个文件映射到一段内存中,然后在操作这个文件内存就可以像操作内存一样。比如我们创建一个完全内容随机的文件,然后将它用内存映射的方式映射到一段内存空间中。那么我们在这段内存中随便取一位就相当于取到了一个随机数。下面就让我们来做这个实验,先用下面命令生成一个内容随机的文件。

$ dd if=/dev/urandom bs=1024 count=1000000 of=/home/user/random
1000000+0 records in
1000000+0 records out
1024000000 bytes (1.0 GB) copied, 123.293 s, 8.3 MB/s
$ ls -lh random
-rw-r--r-- 1 user user 977M 2011-08-29 16:46 random

然后我们用下面程序来将这个文件内容映射到内存,再从中取出随机数

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <stdlib.h>
#include <sys/mman.h>int main() {char *random_bytes;FILE *f;int offset = 0;// open "random" for readingf = fopen("/home/user/random", "r");if (!f) {perror("couldn't open file");return -1;}// we want to inspect memory before mapping the fileprintf("run `pmap %d`, then press ", getpid());getchar();random_bytes = mmap(0, 1000000000, PROT_READ, MAP_SHARED, fileno(f), 0);if (random_bytes == MAP_FAILED) {perror("error mapping the file");return -1;}while (1) {printf("random number: %d (press  for next number)", *(int*)(random_bytes+offset));getchar();offset += 4;}
}

然后运行这个程序:

 $ ./mem_munch
run `pmap 12727`, then press

下面我们通过一次次的按下回车键来从这个文件中读取随机数,按下几次后我们可以再通过pmap来查看其内存空间的情况:

$ pmap 12727
12727:   ./mem_munch
0000000000400000      4K r-x--  /home/user/mem_munch
0000000000600000      4K r----  /home/user/mem_munch
0000000000601000      4K rw---  /home/user/mem_munch
000000000147d000    132K rw---    [ anon ]
00007fe261c6f000 976564K r--s-  /home/user/random
00007fe29d61c000   1576K r-x--  /lib/x86_64-linux-gnu/libc-2.13.so
00007fe29d7a6000   2044K -----  /lib/x86_64-linux-gnu/libc-2.13.so
00007fe29d9a5000     16K r----  /lib/x86_64-linux-gnu/libc-2.13.so
00007fe29d9a9000      4K rw---  /lib/x86_64-linux-gnu/libc-2.13.so
00007fe29d9aa000     24K rw---    [ anon ]
00007fe29d9b0000    132K r-x--  /lib/x86_64-linux-gnu/ld-2.13.so
00007fe29dba6000     12K rw---    [ anon ]
00007fe29dbcc000     16K rw---    [ anon ]
00007fe29dbd0000      4K r----  /lib/x86_64-linux-gnu/ld-2.13.so
00007fe29dbd1000      8K rw---  /lib/x86_64-linux-gnu/ld-2.13.so
00007ffff29b2000    132K rw---    [ stack ]
00007ffff29de000      4K r-x--    [ anon ]
ffffffffff600000      4K r-x--    [ anon ]total           980684K

上面的输出和之前的大同小异,但是多出了上面红色的一行。这是我们上面的随机文件映射到内存中的内存。我们再使用pmap -x 选项来查看一下程序的内存使用,会得到下面的内容,其中RSS(resident set size)列表示真实占用的内存。

pmap -x 12727
12727:   ./mem_munch
Address           Kbytes     RSS   Dirty Mode   Mapping
0000000000400000       0       4       0 r-x--  mem_munch
0000000000600000       0       4       4 r----  mem_munch
0000000000601000       0       4       4 rw---  mem_munch
000000000147d000       0       4       4 rw---    [ anon ]
00007fe261c6f000       0       4       0 r--s-  random
00007fe29d61c000       0     288       0 r-x--  libc-2.13.so
00007fe29d7a6000       0       0       0 -----  libc-2.13.so
00007fe29d9a5000       0      16      16 r----  libc-2.13.so
00007fe29d9a9000       0       4       4 rw---  libc-2.13.so
00007fe29d9aa000       0      16      16 rw---    [ anon ]
00007fe29d9b0000       0     108       0 r-x--  ld-2.13.so
00007fe29dba6000       0      12      12 rw---    [ anon ]
00007fe29dbcc000       0      16      16 rw---    [ anon ]
00007fe29dbd0000       0       4       4 r----  ld-2.13.so
00007fe29dbd1000       0       8       8 rw---  ld-2.13.so
00007ffff29b2000       0      12      12 rw---    [ stack ]
00007ffff29de000       0       4       0 r-x--    [ anon ]
ffffffffff600000       0       0       0 r-x--    [ anon ]
----------------  ------  ------  ------
total kB          980684     508     100

如果你的虚拟内存占用(上面的Kbytes列)都是0,不用担心,这是一个在Debian/Ubuntu系统上pmap -x命令的bug。最后一行输出的总占用量是正确的。

现在你可以看一下RSS那一列,这就是实际内存占用。在random文件上,你的程序实际上可以访问在00007fe261c6f000之前的数十亿字节的内存地址,但是只要你访问的地址超过4KB,那么操作系统就会去磁盘上查找内容。也就是说实际上只有4KB的物理内存被使用了。只有访问这4KB的东西时,才是真正的内存操作。其它部分虽然你使用的也是内存操作函数来访问它,但是由于它没有被加载到内存中,所以在这些内容被访问的时候,操作系统会先去磁盘读random中读取内容到内存中。

如果我们把程序再修改一下,修改成下面这样,让程序把整个random文件都访问一遍。

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <stdlib.h>
#include <sys/mman.h>int main() {char *random_bytes;FILE *f;int offset = 0;// open "random" for readingf = fopen("/home/user/random", "r");if (!f) {perror("couldn't open file");return -1;}random_bytes = mmap(0, 1000000000, PROT_READ, MAP_SHARED, fileno(f), 0);if (random_bytes == MAP_FAILED) {printf("error mapping the file\n");return -1;}for (offset = 0; offset < 1000000000; offset += 4) {int i = *(int*)(random_bytes+offset);// to show we're making progressif (offset % 1000000 == 0) {printf(".");}}// at the end, wait for signal so we can check memprintf("\ndone, run `pmap -x %d`\n", getpid());pause();
}

现在我们的pmap -x命令就会得到如下输出:

$ pmap -x 5378
5378:   ./mem_munch
Address           Kbytes     RSS   Dirty Mode   Mapping
0000000000400000       0       4       4 r-x--  mem_munch
0000000000600000       0       4       4 r----  mem_munch
0000000000601000       0       4       4 rw---  mem_munch
0000000002271000       0       4       4 rw---    [ anon ]
00007fc2aa333000       0  976564       0 r--s-  random
00007fc2e5ce0000       0     292       0 r-x--  libc-2.13.so
00007fc2e5e6a000       0       0       0 -----  libc-2.13.so
00007fc2e6069000       0      16      16 r----  libc-2.13.so
00007fc2e606d000       0       4       4 rw---  libc-2.13.so
00007fc2e606e000       0      16      16 rw---    [ anon ]
00007fc2e6074000       0     108       0 r-x--  ld-2.13.so
00007fc2e626a000       0      12      12 rw---    [ anon ]
00007fc2e6290000       0      16      16 rw---    [ anon ]
00007fc2e6294000       0       4       4 r----  ld-2.13.so
00007fc2e6295000       0       8       8 rw---  ld-2.13.so
00007fff037e6000       0      12      12 rw---    [ stack ]
00007fff039c9000       0       4       0 r-x--    [ anon ]
ffffffffff600000       0       0       0 r-x--    [ anon ]
----------------  ------  ------  ------
total kB          980684  977072     104

我们可以看到,random文件映射实际占用内存量已经和random文件大小一致了,也就是也random文件通过循环访问,其内容已经完全加载到内存中了。现在我们再访问random文件的任何部分,实际上都是内存操作。而不会穿透到磁盘。

这篇关于linux 虚拟内存一角的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837166

相关文章

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Linux搭建ftp服务器的步骤

《Linux搭建ftp服务器的步骤》本文给大家分享Linux搭建ftp服务器的步骤,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录ftp搭建1:下载vsftpd工具2:下载客户端工具3:进入配置文件目录vsftpd.conf配置文件4:

Linux实现查看某一端口是否开放

《Linux实现查看某一端口是否开放》文章介绍了三种检查端口6379是否开放的方法:通过lsof查看进程占用,用netstat区分TCP/UDP监听状态,以及用telnet测试远程连接可达性... 目录1、使用lsof 命令来查看端口是否开放2、使用netstat 命令来查看端口是否开放3、使用telnet

Linux系统管理与进程任务管理方式

《Linux系统管理与进程任务管理方式》本文系统讲解Linux管理核心技能,涵盖引导流程、服务控制(Systemd与GRUB2)、进程管理(前台/后台运行、工具使用)、计划任务(at/cron)及常用... 目录引言一、linux系统引导过程与服务控制1.1 系统引导的五个关键阶段1.2 GRUB2的进化优

Linux查询服务器 IP 地址的命令详解

《Linux查询服务器IP地址的命令详解》在服务器管理和网络运维中,快速准确地获取服务器的IP地址是一项基本但至关重要的技能,下面我们来看看Linux中查询服务器IP的相关命令使用吧... 目录一、hostname 命令:简单高效的 IP 查询工具命令详解实际应用技巧注意事项二、ip 命令:新一代网络配置全

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详

Linux grep 命令的使用指南

《Linuxgrep命令的使用指南》本文给大家介绍Linuxgrep命令的使用指南,包括基础搜索语法、实践指南,感兴趣的朋友跟随小编一起看看吧... 目录linux grep 命令全面使用指南一、基础搜索语法1. 基本文本搜索2. 多文件搜索二、常用选项详解1. 输出控制选项2. 上下文控制选项三、正则表达

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到