YOLOv8 | 注意力机制 | ShuffleAttention注意力机制 提升检测精度

2024-03-23 03:36

本文主要是介绍YOLOv8 | 注意力机制 | ShuffleAttention注意力机制 提升检测精度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLOv8成功添加ShuffleAttention


⭐欢迎大家订阅我的专栏一起学习⭐

🚀🚀🚀订阅专栏,更新及时查看不迷路🚀🚀🚀
       YOLOv5涨点专栏:http://t.csdnimg.cn/1Aqzu

YOLOv8涨点专栏:http://t.csdnimg.cn/jMjHb

YOLOv7专栏:http://t.csdnimg.cn/yhXBl

💡魔改网络、复现论文、优化创新💡

 

目录

原理 

代码实现

yaml文件实现

完整代码分享

启动命令

注意事项


注意力机制使神经网络能够准确地关注输入的所有相关元素,已成为提高深度神经网络性能的重要组成部分。计算机视觉研究中广泛使用的注意力机制主要有两种:空间注意力和通道注意力,其目的分别是捕获像素级的成对关系和通道依赖性。虽然将它们融合在一起可能会比它们单独的实现获得更好的性能,但它不可避免地会增加计算开销。高效的ShuffleAttention(SA)模块可以解决这个问题,它采用ShuffleAttention单元来有效地结合两种类型的注意机制。具体来说,SA 首先将通道维度分组为多个子特征,然后并行处理它们。然后,对于每个子特征,SA 利用洗牌单元来描述空间和通道维度上的特征依赖性。之后,所有子特征被聚合,并采用“通道洗牌”算子来实现不同子特征之间的信息通信。 SA 模块高效且有效,例如,SA 针对主干 ResNet50 的参数和计算量分别为 300 vs. 25.56M 和 2.76e-3 GFLOPs vs. 4.12 GFLOPs,并且性能提升超过 1.34% Top-1 准确度方面。

使用 ResNets 作为主干的 ImageNet-1k 上最近的 SOTA 注意力模型(包括 SENet、CBAM、ECA-Net、SGE-Net 和 SA-Net)在准确性、网络参数和 GFLOP 方面的比较。圆圈的大小表示 GFLOP。显然,所提出的 SA-Net 实现了更高的精度,同时模型复杂度更低 

原理 

首先介绍构建SA模块的过程,该模块将输入特征图分组,并使用Shuffle Unit将通道注意力和空间注意力整合到每个组的一个块中。之后,所有子特征被聚合,并利用“通道洗牌”算子来实现不同子特征之间的信息通信。然后,我们展示如何在深度 CNN 中采用 SA。最后,我们可视化效果并验证所提出的 SA 的可靠性。 SA模块整体架构如图所示

Shuffle Attention结构图

它采用“通道分割”并行处理各组的子特征。对于通道注意力分支,使用 GAP 生成通道统计量,然后使用一对参数来缩放和移动通道向量。对于空间注意力分支,采用群范数生成空间统计量,然后创建类似于通道分支的紧凑特征。然后将两个分支连接起来。之后,所有子特征被聚合,最后我们利用“通道洗牌”运算符来实现不同子特征之间的信息通信。 

完全捕获通道依赖性的一个选项是利用SE块。然而,它会带来太多的参数,这不利于在速度和准确性之间进行权衡,设计更轻量级的注意力模块。此外,像 ECA 一样,不适合通过执行大小为 k 的更快一维卷积来生成通道权重,因为 k 往往会更大。为了改进,我们提供了一种替代方案,首先通过简单地使用全局平均池化(GAP)来嵌入全局信息,生成通道统计量 s ∈ RC/2G×1×1,可以通过空间维度缩小Xk1 来计算高×宽此外,还创建了一个紧凑的功能来指导精确和自适应的选择。这是通过带有 sigmoid 激活的简单门控机制来实现的。

与通道注意力不同,空间注意力关注的是“哪里”,是信息性的部分,与通道注意力是互补的。首先,我们在 Xk2 上使用群范数 (GN)来获得空间统计数据。然后,采用Fc(·)来增强^ Xk2的表示。

之后,所有子特征都被聚合。最后,与ShuffleNet v2 类似,我们采用“channel shuffle”算子来实现沿通道维度的跨组信息流。 SA模块的最终输出与X的大小相同,使得SA非常容易与现代架构集成

代码实现
class ShuffleAttention(nn.Module):def __init__(self, channel=512, reduction=16, G=8):super().__init__()self.G = Gself.channel = channelself.avg_pool = nn.AdaptiveAvgPool2d(1)self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))self.sigmoid = nn.Sigmoid()def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)@staticmethoddef channel_shuffle(x, groups):b, c, h, w = x.shapex = x.reshape(b, groups, -1, h, w)x = x.permute(0, 2, 1, 3, 4)# flattenx = x.reshape(b, -1, h, w)return xdef forward(self, x):b, c, h, w = x.size()# group into subfeaturesx = x.view(b * self.G, -1, h, w)  # bs*G,c//G,h,w# channel_splitx_0, x_1 = x.chunk(2, dim=1)  # bs*G,c//(2*G),h,w# channel attentionx_channel = self.avg_pool(x_0)  # bs*G,c//(2*G),1,1x_channel = self.cweight * x_channel + self.cbias  # bs*G,c//(2*G),1,1x_channel = x_0 * self.sigmoid(x_channel)# spatial attentionx_spatial = self.gn(x_1)  # bs*G,c//(2*G),h,wx_spatial = self.sweight * x_spatial + self.sbias  # bs*G,c//(2*G),h,wx_spatial = x_1 * self.sigmoid(x_spatial)  # bs*G,c//(2*G),h,w# concatenate along channel axisout = torch.cat([x_channel, x_spatial], dim=1)  # bs*G,c//G,h,wout = out.contiguous().view(b, -1, h, w)# channel shuffleout = self.channel_shuffle(out, 2)return out
yaml文件实现
# Ultralytics YOLO  , GPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 6  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [-1, 3, ShuffleAttention, [1024]]- [[15, 18, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)
完整代码分享

链接: https://pan.baidu.com/s/1NPb6C6svuNGqyZIYUVgsVw?pwd=yjnw 提取码: yjnw

启动命令
yolo detect train model=/path/yolov8_ShuffleAttention.yaml data=/path/coco128.com
注意事项

如果报错,查看这篇文章

YOLOv8 | 添加注意力机制报错KeyError:已解决,详细步骤_yolov8 keyerroe-CSDN博客

 

这篇关于YOLOv8 | 注意力机制 | ShuffleAttention注意力机制 提升检测精度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837012

相关文章

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示